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1. Introduction 
For many reasons we want to have a boundary representation of an object in 3D, which is 
valid and closed. One reason is that we want to construct a tetrahedralization; therefore, the 
boundary representation should be a valid and closed triangulation. 

For constructing this tetrahedralization, the program TetGen could be used. The input of 
TetGen should be a valid and closed representation, if not TetGen detects the invalid 
polygons. 
 
The aim of this research is to conduct a solution to detect invalid triangles, to make them valid 
and to repair unclosed triangulated 3D boundary representations. 
 
This report contains a literature overview on this topic, it is a kind of summary of books,  
papers and articles that are available and useable. Every chapter describes only one article, 
paper or book, and all chapters are ordered on the writers family name alphabetically. 
 
As a conclusion, I would like to thank here those who contributed, in one way or another, to 
this report, and above all my supervisor Edward Verbree. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Keywords: mesh generation, triangulation, tetrahedralization, triangle, tetrahedron, 
relationship, intersection, TetGen. 
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2. Robust and efficient Cartesian mesh generation for component-based 
geometry 

Aftosmis M.J., Berger M.J., Melton J.E. (1997) Robust and efficient Cartesian mesh 
generation for component-based geometry, Technical Report AIAA-97-0196, US Air Force 
Wright Laboratory, pp. 2-4. 
 
2.1 Abstract 
This article documents a new method for rapid and robust Cartesian mesh generation for 
component-based geometry. The new algorithm adopts a novel strategy, which first intersects 
the components to extract the wetted surface before proceeding with volume mesh generation 
in a second phase. The intersection scheme is based on a robust geometry engine that uses 
adaptive precision arithmetic and which automatically and consistently handles geometric 
degeneracies with an algorithmic tie-breaking routine. The intersection procedure has worse 
case computational complexity of O(N logN) and is demonstrated on test cases with up to 121 
overlapping and intersecting components including a variety of geometric degeneracies. 

The volume mesh generation takes the intersected surface triangulation as input and 
generates the mesh through cell division of an initially uniform coarse grid. In refining 
hexagonal cells to resolve the geometry, the new approach preserves the ability to 
directionally divide cells, which are well-aligned with local geometry. The mesh generation 
scheme has linear asymptotic complexity with memory requirements that total approximately 
14 words per cell. The mesh generation speed is approximately 106cells per minute on a 195 
MHz RISC R10000 workstation. 
 
2.2 Intersection of Generally Positioned Triangles in R3 (pp. 2-4) 
With the task of intersecting a particular triangle reduced to an intersection test between that 
triangle and those on the list of candidates provided by the ADT, the intersection problem is 
re-cast as a series of tri-tri intersection computations. Figure 1 shows a view of two 
intersecting triangles as a model for discussion. Each intersecting tri-tri pair will contribute 
one segment to the final polyhedra that will comprise the wetted surface of the configuration. 
The assumption of data in general (as opposed to arbitrary) position implies that the 
intersection is always non-degenerate. Triangles may not share vertices, and edges of tri-tri 
pairs do not intersect exactly. Thus, all intersections will be proper. This restriction will be 
lifted in later sections with the introduction of an automatic tie-breaking algorithm. 
 

 
Figure 1: An intersecting pair of generally 
positioned triangles in three dimensions. 

 
Several approaches exist to compute such intersections but a particularly attractive technique 
comes in the form of a Boolean test. This predicate can be performed robustly and quickly 
using only multiplication and addition, thus avoiding the inaccuracy and robustness pitfalls 
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associated with division using fixed width representations of floating point numbers. It is 
useful to present a rather comprehensive treatment of this intersection primitive because 
subsequent sections on robustness will return to these relations. 

For two triangles to properly intersect in 3D space, the following conditions must exist: 
1. Two edges of one triangle must cross the plane of the other. 
2. If condition (1) exists, there must be a total of two edges (of the six available), 

which pierce within the boundaries of the triangles. 
 
One approach to checking these conditions is to directly compute the pierce points of the 
edges of one triangle in the plane of the other. Pierce locations from one triangle’s edges may 
then be tested for containment within the boundary of the other triangle. This approach, while 
conceptually simple, is error prone when implemented using finite precision mathematics. In 
addition to demanding special effort to trap out zeros, the floating-point division required by 
this approach may result in numbers not exactly representable by finite width words. This 
results in a loss of control over precision and may cause serious problems with robustness. 

An alternative to this slope-pierce test is to consider a Boolean check based on 
computation of a triple product without division. A series of such logical checks have the 
attractive property that they permit one to establish the existence and connectivity of the 
segments without relying on the problematic computation of the pierce locations. The final 
step of computing the locations of these points may then be relegated to post-processing 
where they may be grouped together and, since the connectivity is already established, 
floating point errors will not have fatal consequences. 

The Boolean primitive for the 3D intersection of an edge and a triangle is based on the 
concept of the signed volume of a tetrahedron in R3. This signed volume is based on the well-
established relationship for the computation of the volume of a simplex, T, in d dimensions in 
determinate form (see for ex. O’Rourke (1998)). The signed volume V(T) of the simplex T 
with vertices ( )0 1 3, , , , dv v v v… in d dimensions is: 

( )
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where 
jkv denotes the thj coordinate of the thk vertex with { }, 0,1,2, ,j k d∈ … . In 3 dimensions, 

equation (2) gives six times the signed volume of the tetrahedron Tabcd. 
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This volume serves as the fundamental building block of the geometry routines. It is positive 
when (a,b,c) forms a counterclockwise circuit when viewed from an observation point located 
on the side of the plane defined by (a,b,c) which is opposite from d. Positive and negative 
volumes define the two states of the Boolean test while zero indicates that the four vertices 
are exactly coplanar. If the vertices are indeed coplanar, then the situation constitutes a “tie” 
which will be resolved with a general tie-breaking algorithm presented shortly. In applying 
this logical test to edge ab and triangle (0,1,2) in Figure 1, ab crosses the plane if and only if 
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(iff) the signed volumes T012a and T012b have opposite signs. Figure 2 presents a graphical look 
at the application of this test. 
 

 
Figure 2: Boolean test to check if edge ab crosses the plane defined 

by triangle (0,1,2) through computation of two signed volumes. 
 
With a and b established on opposite sides of the plane (0,1,2), all that remains is to determine 
if ab pierces within the boundary of the triangle. This will be the case only if the three 
tetrahedra formed by connecting the end points of ab with the three vertices of the triangle 
(0,1,2) (taken two at a time) all have the same sign, that is: 

( ) ( ) ( )
( ) ( ) ( )

12 01 20

12 01 20

0 0 0     or

0 0 0
a b a b a b

a b a b a b

V T V T V T

V T V T V T

< ∧ < ∧ <

> ∧ > ∧ >
  (3) 

Figure 3 illustrates this test for the case where the three volumes are all positive. 
 

 
Figure 3: Boolean test for pierce of a line segment ab within 

the boundary of a triangle (0,1,2). 
 
After determining the existence of all the segments which result from intersections between 
tri-tri pairs and connecting a linked list of all such segments to the triangles that intersect to 
produce them, all that remains is to actually compute the locations of the pierce points. This is 
accomplished by using a parametric representation of each intersected triangle and the edge, 
which pierces it. The technique is a straightforward three dimensional generalization of the 
2D method presented in “Computational Geometry in C” (O'Rourke, 1998). 
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3. The Dimensional Model: A Framework to Distinguish Spatial 
Relationships 

Billen R., Zlatanova S., Mathonet P., Boniver F. (2002) The Dimensional Model: A 
Framework to Distinguish Spatial Relationships, Advances in Spatial Data Handling, 
Springer-Verlag, Heidelberg, pp. 286-287, 290-293, 294-296. 
 
3.1 Abstract 
A number of frameworks use topology as a basic mechanism to define spatial relationships. In 
this research, topology is not suitable. In this paper, a new framework for representing spatial 
relationships – the Dimensional Model – is introduced. The model addresses a substantial 
group of spatial relationships and provides a flexible framework to consider either generalised 
or specialised types of associations. This framework will be adopted in this research to 
describe spatial relations between two triangles. 
 
3.2 An Order Formula for Convex Bodies (pp. 286-287) 
Affine Subspaces and Convex Sets 
Geographers and mathematicians use co-ordinates to describe location in space. Whenever d 
is a positive integer, we denote by Rd the set of tuples ( )1, , dα α… of real numbers 1 dα ,…,α . As 
Euclidean vector (or affine) space, Rd is the natural framework in which geometry can 
formally be studied. It is also the first example of Euclidean topological space. 

A subset A of Rd is an affine subspace if, for any distinct points x,y belonging to A, the 
(infinite) straight line defined by x and y lies in A. Points, straight lines, planes, and R3 itself 
are the only affine subspace of R3. Their respective dimensions are 0, 1, 2 and 3. An affine 
subspace of dimension d-1 of Rd is named hyperplane. For instance, the hyperplanes are 
merely straight lines in R2 and planes in R3. A hyperplane divides the whole space in two 
regions, called halfspaces. 

A subset A of Rd is convex if, for any two points x,y belonging to A, the segment [x,y] 
lies in A. A supporting hyperplane M of a convex set C is a hyperplane such that 

- C is included in one of the halfspaces defined by M, 
- M C∩ ≠∅ . 

 
Figure 4 shows examples of convex sets and supporting hyperplanes in R2 and R3. 
 

 
Figure 4: Examples of closed convex sets and hyperplanes 

 
Order of Points in Closed Convex Set 
Let C be a convex set, closed with respect to the Euclidean topology. Each point of C has an 
order, and can be stated as follow. Let C be a closed convex set in Rd and x C∈ . The order of 
x in C, denoted by o(x,C), is the dimension of the intersection of all supporting hyperplanes 
containing x. 

In particular, if no supporting hyperplanes contains x, then x has order d. One can prove 
that those points with order d are exactly the interior points of C with respect to the Euclidean 
topology. 
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Figure 5 shows points with various orders in a triangle, a drop, and a segment. For instance, 
the top point of the triangle has order 0. Indeed, infinitely many supporting hyperplanes (only 
two are represented) go through it and intersect in that point itself. Figure 6 shows examples 
in R3. 
 

 
Figure 5: Order of points of closed convex sets in R2 (with some hyperplanes) 

 

 
Figure 6: Order of points of closed convex sets in R3 (without hyperplanes) 

 
3.3 The Dimensional Model (pp. 290-293) 
The Dimensional Model (DM) is a (conceptual) framework to describe both spatial objects 
and spatial relationships. The spatial objects are composed by dimensional elements, which 
are based on order’s points of object. The spatial relationships between spatial objects are 
described in terms of dimensional relationships, i.e. relationships that exist between the 
dimensional elements of the objects. 
 
Spatial objects in DM 
In our model, a simple spatial object of dimension d is equivalent to a topological d-manifold. 
They are called simple because it is possible to apply directly the order formula to them, and 
therefore determine their dimensional elements. We also define a complex spatial object (as a 
combination of simple spatial object), which will not be discussed here (see Figure 7). 
 

  
Simple spatial objects (manifold)  Complex spatial objects (aggregation of simple objects)

Figure 7: Examples of spatial objects 
 
Dimensional elements of DM 
The dimensional elements are associated with different parts (or points) of a spatial object 
according to their order. 
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1. The α -dimensional element (denoted α D-element) of a spatial object C (which has 
at least dimensionα ), corresponds to the set of all the points (or parts) of C which 
have order 0 toα . 

2. The α D-element of a spatial object C has an extension and may have a limit. 
3. The extension is the subset of C formed by its points of order α , and the limit is the 

subset of C formed by its points of order 0 to order (α -1). 
 
Thus, if the α D-element has a limit, this limit corresponds to a lower (α -1)D-element. The 
0D-element does not have a limit by definition. Figure 8 illustrates the dimensional elements 
of a polygon. First, the order of all the points is determined. 

This convex is composed of 2D, 1D and 0D-elements. The different extension and 
limits are also presented in Figure 8. In the case of an ellipse, the 1D-element does not have a 
limit. It should be noted that there is one and only one xD-element for this object. 
 

 
Figure 8: Order of points and dimensional elements of a polygon and of an ellipse 

 
Dimensional Relationships 
The dimensional relationships are defined as the relationships existing between dimensional 
elements. These relationships can either be total, partial or nonexistent, and are oriented (from 
one element to another one). 

- A dimensional element is in total relation with another dimensional element if their 
intersection is equal to the first element, and if the intersection between their 
extensions is not empty. 

- A dimensional element is in partial relation with another dimensional element if 
their intersection is not equal to the first element, and if the intersection between their 
extensions is not empty. 

- A dimensional element is in no relation (non-existent) with another dimensional 
element if the intersection between their extensions is empty. 

 
Figure 9 illustrates the three types of dimensional relationships for 2D-elements. 
 

   
No relation (non-existent) Total relation Partial relation 

Figure 9: The different types of dimensional relationships between two 2D-elements (from 
black element to grey element) 
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The Dimensional Model for Investigation of Spatial Relationships 
The dimensional elements (with their limits and extensions) and the dimensional relationships 
(i.e. total, partial and non-existent) are the basic tools to decode spatial relationships. The 
spatial relationship between two objects can be expressed by the dimensional relationships 
that exist between the dimensional elements of both objects. For example, let us consider a 
polygon A (with 2D, 1D, 0D elements) and a line B (with 1D and 0D-elements). The 
dimensional relationships between the spatial object A and the spatial object B can be 
identified in the following sequence: first, check the dimensional relationship between the 2D-
element of A and all the dimensional elements of spatial object B; then, check the dimensional 
relationship between the 1D-element of A and all the dimensional elements of spatial object B, 
etc. The dimensional relationships between B and A can be found following the same 
approach. Three groups of dimensional relationships can be distinguished following this 
approach, i.e. the simplified, the basic and the extended relationships. 

A dimensional relationship is coded RnDy, using the notations R for relationships, nD 
for dimension of the element of the first object, and y dimension of the element of the second 
object. R2D1 represents the dimensional relationships between the 2D-element of the first 
object and the 1D-element of the second object. Furthermore, a numeric code for the three 
types of dimensional relationships, i.e. 0 for non-existent, 1 for total and 2 for partial, is 
specified. 

The basic relationships. This group contains all the relationships between every 
possible combination of dimensional elements. For example, the spatial relationship between 
a polygon (considering 2D, 1D, 0D elements) and a line (considering 1D and 0D elements) 
can be expressed by basic dimensional relationships as follows: 

 
R2D1 R2D0 R1D1 R1D0 R0D1 R0D0 
{0,1,2} {0,1,2} {0,1,2} {0,1,2} {0,1,2} {0,1,2}
 
where 0, 1, 2 correspond to the possible dimensional relationships, i.e. nonexistent, total 

and partial. 
The extended relationships. The partial relation can be further investigated for the 

dimension of the intersection. For example, in R3, a 2D-element and a 1Delement may have a 
1D- or a 0D-intersection. If the intersection has the same dimension as the lowest dimensional 
element in the relation, it keeps the code 2 (e.g., if a 2D-element and a 1D-element have a 1D-
intersection, it would be noted as R2D1 2). If the dimension of the intersection is just inferior, 
then it would have code 3 (a 0D-intersection in the example, R2D1 3). Our example of the 
extended dimensional relationships between a polygon and a line becomes: 

 
R2D1 R2D0 R1D1 R1D0 R0D1 R0D0 
{0,1,2,3} {0,1,2} {0,1,2,3} {0,1,2} {0,1,2} {0,1,2}
 
The simplified dimensional relationships. In many cases the dimensional elements of 

the second object is not relevant. For example, it might be interesting to know if the 2D-
element of a polygon has a relationship with another object independently of its dimensional 
elements. In such cases, some dimensional relationships can be aggregated. The complete 
aggregation rules will not be exposed here. Our example of the simplified dimensional 
relationship becomes: 

 
R2D R1D R0D 
{0,1,2} {0,1,2} {0,1,2} 
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Figure 10 illustrates how the spatial relationships between a polygon and a line are 
represented according to the different groups in the Dimensional Model. 
 

 
Basic relationships 
R2D1 |R2D0 |R1D1 |R1D0 |R0D1 |R0D0 
2 |0 |0 |0 |0 |0 

Extended relationships 
R2D1 |R2D0 |R1D1 |R1D0 |R0D1 |R0D0 
3 |0 |0 |0 |0 |0 

Simplified relationships 
R2D |R1D |R0D 
2 |0 |0  

Figure 10: The Dimensional Model applied to the relationship between a polygon and a line 
 
3.4 Possible Spatial Relationships (pp. 294-296) 
As mentioned, three groups of dimensional relationships can be used to express the spatial 
relationship between objects. Furthermore, one has the choice to take into consideration only 
relevant dimensional elements in a geographical perspective. For example, a particular 
geographical phenomena represented by a polygon may not need a distinction between the 
1D-element and the 0D-element which form its border. In such a case, although the 0D-
element exists in the object’s definition, it would not be taken into account in the 
determination of the spatial relationship. 

The number of potential relationships between two objects depends, with respect to the 
Dimensional Model, on: 1) the dimensional nature of the objects (given by dimensional 
elements), 2) the semantic dimension of the object (only the “relevant” dimensional elements 
from a semantic point of view) and 3) the group of dimensional relationships. Similarly to the 
9-intersection model, only a small number of the theoretical relationships can be realised in 
reality. The same approach is adopted, i.e. elimination of impossible relationships by negative 
conditions. All the possible relationships between line-line, line-surface, line-body, surface-
surface, surface-body and finally body-body have been established and studied for the 
different criterion mentioned above. Note that in this study, some elements have been 
simplified. For example the 0D element of a line corresponds only to its extremities (no 
broken lines). Table 1 portrays simplified, basic and extended relationships for all levels of 
dimensional relevancy. 
 

Table 1: Possible relationships according to the Dimensional Model 
D 
element 

Dim. Rel. Line-Line Surface-
line 

Body-
body 

Surface-
surface 

Body-
Line 

Body-
surface 

(n)D S. 5 3 5 5 3 3 
 B. 5 3 5 5 3 3 
 E. 7 5 5 11 3 3 
(n)D S. 11 10 8 15 6 8 
&(n-1)D B. 33 31 8 43 19 19 
 E. 61 ? 15 ? 43 48 
(n)D S. - ? ? ? 19 ? 
&(n-1)D B. - ? ? ? ? ? 
&(n-2)D E. - ? ? ? ? ? 
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(n)D S. - - ? - ? ? 
&(n-1)D B. - - ? - ? ? 
&(n-2)D E. - - ? - ? ? 
&(n-3)D        
With Dim. Rel. = Dimensional relationship; S. = simplified; B. = basic; E. =extended  
? non determinate 
- impossible case 
33 possible relationships according to the 9 intersection model 
 
Considering the highest and the second highest dimensional element and using the basic 
relationship, the relationships reported by Zlatanova (2000) are found. They are shown in bold 
font in Table 1 (gray row). Most of the equivalent topological cases can be “refined” using 
some of the more complex criteria in the Dimensional Model (i.e. everything that is below the 
shaded line in Table 1). Further, more aggregated relationships can be found with simpler 
criterions (i.e. everything that is above this line). Figure 11 presents the extended dimensional 
solutions (0D elements are not taken into account) to the topological equivalence R095 and 
R287 (between a body A and a surface B). 
 

 
 R3D2 R3D1 R2D2 R2D1 R1D2 R1D1 
(a) 0 0 2 0 2 0 
(b) 0 0 0 0 2 0 
(c) 0 0 0 2 0 0 
(d) 0 0 0 0 0 2 

Figure 11: Dimensional relationships for, (a) and (b) topological equivalence R095, and (c) 
and (d) R287 

 
Another interesting example concerns the “meet” relationship between two bodies. All the 
spatial situations in Figure 12 are equivalent to R287 according to the 9-intersection model, 
while all of them can be differentiated with the Dimensional model. Solutions are given only 
for cases a, b, c and d. The cases e and f need to consider the 0D-element. 
 

 
 R3D3 R3D2 R3D1 R2D3 R2D2 R2D1 R1D3 R1D2 R1D1 
(a) 0 0 0 0 2 2 0 0 0 
(b) 0 0 0 0 2 2 0 0 2 
(c) 0 0 0 0 0 0 0 2 2 
(d) 0 0 0 0 0 0 0 0 2 

Figure 12: Dimensional relationships for topological equivalence (R287) 
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4. Finite-element mesh generation from constructive-solid-geometry 
models 

Boender E., Bronsvoort W.F., Post F.H. (1994) Finite-element mesh generation from 
constructive-solid-geometry models, Butterworth-Heinemann Ltd, Computer-Aided Design 
Volume 26 Number 5 May 1994. 
 
4.1 Abstract 
This paper discusses automatic finite element (FE) mesh generation from a constructive solid 
geometry (CSG) model of a 3D solid object with curved faces. The derivation of a mesh from 
a CSG model thus proceeds in two steps. The first is boundary evaluation of the CSG model, 
which entails its conversion into a B-rep by computation of the boundary elements of the 
object. The second step is the generation of a tetrahedral mesh from this B-rep. In the B-rep, 
faces are represented as trimmed, rational, Bezier patches. All the computations on edges and 
faces are reduced to 2D. The FE meshing of the B-rep is then performed by triangulation of 
the faces, followed by tetrahedralization of the interior of the solid. In this paper only some 
examples of triangulations are useful. 
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5. Geometry and Topology for Mesh Generation 
Edelsbrunner H. (2001) Geometry and Topology for Mesh Generation, Cambridge University 
Press, Cambridge, pp. 44-46, 59-60, ISBN 0521793092. 
 
5.1 Abstract 
The book combines topics in mathematics (geometry and topology), computer science 
(algorithms), and engineering (mesh generation). Mesh generation is a topic in which a 
meaningful combination of these different approaches to problem solving is inevitable. The 
book develops methods from both areas that are amenable to combination and explains recent 
breakthrough solutions to meshing that fit into this category.  
 
5.2 Simplicial complexes (pp. 44-46) 
The book uses simplicial complexes as the fundamental tool to model geometric shapes and 
spaces. Simplicial complexes generalize and formalize the somewhat loose geometric 
notations of a triangulation. Because of their combinatorial nature, simplicial complexes are 
perfect data structures for geometric modelling algorithms. 
 
Simplices 
A finite collection of points is affinely independent if no affine space of dimension i contains 
more than i + 1 of the points, and this is true for every i. A k-simplex is the convex hull of a 
collection of k + 1 affinely independent points, conv Sσ = . The dimension of σ is dim kσ = . 
In d , the largest number of affinely independent points is d + 1, and there are simplices of 
dimension -1,0,…,d. The (-1)-simplex is the empty set. The convex hull of any subset T S⊆ is 
again a simplex. 
 
Simplicial complexes 
A simplicial complex is the collection of faces of a finite number of simplices, any two of 
which are either disjoint or meet in a common face. A subcomplex is a subset that is a 
simplicial complex itself. 
 
5.3 Orientability (pp. 59-60) 
Manifolds with or without boundary can be either orientable or non-orientable. The 
distinction is a global property that cannot be observed locally. Intuitively, we can imagine a 
(k+1)-dimensional ant walking on the k-manifold (or in this case on the k-simplex). At any 
moment, the ant is on one side of the local neighbourhood with which it is in contact. The 
manifold is non-orientable if there is a walk that brings the ant back to the same 
neighbourhood but now on the other side, ant it is orientable if no such path exists. 
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6. Delaunay Triangulation and Meshing 
George, P. and Borouchaki, H. (1998) Delaunay Triangulation and Meshing, Application to 
Finite Elements, Hermes, Paris, pp. 5-11, 13-14. 
 
6.1 Abstract 
Automatic mesh generation is of the utmost importance in various engineering domains. The 
purpose of this book is to provide a comprehensive description of the meshing techniques 
based on the so-called Delauney triangulation. Both theoretical and computational aspects are 
discussed from a very practical point of view. The book first addresses triangulation 
construction methods, then discusses classical mesh generation techniques along with more 
advanced topics. Key issues for mesh adaptation are also highlighted. 
 
6.2 Triangle and tetrahedron (pp. 5-11) 
Triangle: While the triangle is a well-known object, a clear definition will be given. A 
triangle is a 3-sided polygon, it is defined by the ordered list of its three vertices, denoted 
as iP , which are given counter clockwise 

 ( )321 ,, PPPK = . (4) 

There are six ways (or permutations) for expressing the vertices defining a triangle. In the 
case where an orientation is defined, only three permutations are relevant. Thus for a triangle 
in a plane, the orientation is implicitly defined using the normal of the plane, and the three 
possible definitions imply that its surface is signed. Thus, the triangle considered will have a 
strictly positive surface. Therefore, the surface area KS (in 2D) is positive and given by 

 
1
1
1

2
1

33

22

11

yx
yx
yx

SK =  (5) 

where ii yx ,  are the coordinates of vertex ( )3 ,1 =iiP  and  .  stands for the determinant. This 
definition enables to explicitly define the sides (or edges) of a given triangle. Edge ( )3 ,1 , =ii , 
denoted as ia , is the edge joining vertex 1+iP  to vertex 2+iP  (while 3−= ii PP  if 3>i  is 
assumed). 
Tetrahedron: A tetrahedron is a polyhedron with four triangular faces. It is well defined by 
the ordered list of its four vertices iP  

 ( )4321 ,,, PPPPK = . (6) 

There exits twelve permutations for expressing the vertices defining an oriented tetrahedron. 
This text assumes that the faces are oriented, thus their normals are also oriented. In addition, 
the volume is signed. Let KV  be the volume of element K , then KV is defined as: 

 
1
1
1
1

6
1

444

333

222

111

zyx
zyx
zyx
zyx

Vk =  (7) 
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where iii zyx ,, are the coordinates of vertex iP of the element. This format enables to implicitly 
define the four faces of the element. A face of K is an ordered list of three vertices: 

 face 1: 234 PPP , 
 face 2: 431 PPP , 
 face 3: 124 PPP , 
 face 4: 321 PPP . 

Similarly, the edges of K are implicitly defined as the following ordered pairs: 
 edge 1: 21 PP , 
 edge 2: 31 PP , 
 edge 3: 41 PP , 
 edge 4: 32 PP , 
 edge 5: 42 PP , 
 edge 6: 43 PP , 

Each edge is defined from its first endpoint to its second endpoint. 
 

 
Figure 13: A triangle (left) and a tetrahedron (right) 

 
6.3 Triangulation and tetrahedralization (pp. 13-14) 
To define a triangulation, the concept of convex hulls is needed. 
 
Convex hull: Let S be a set of points in 3R . If the iP ’s are these points, then 

 ∑
=

n

i
ii P

1

λ  (8) 

represents a linear combination of points in S. These combinations of n members of S, 

for∑
=

=
n

i
i

1

1λ , define a subspace of 3R , which is referred to as the affine hull of the iP ’s. If, for 

all 0 , ≥ii λ , such combinations are said to be convex. The convex hull of S, denoted as 
( )SConv , is the subset of 3R , generated by all the convex linear combinations of the members 

of S. This hull is the smallest convex set including S. 
 
Triangulation: Let S be a set of points in dR ( )3or  2 == dd , the convex hull of S defines a 
domainΩ  in dR . If K is a simplex (triangle or tetrahedron according to d), then 

Definition 1: rT  is a simplicial covering of Ω  if the following conditions hold: 
 (H0) The vertices of the elements in rT  is exactly S. 
 (H1) ∪

rTK

K
∈

=Ω . 

 (H2) Every element K in rT  is non-empty. 
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Tetrahedralization: In triangulations, the primitives with the highest dimension are faces. In a 
three dimensional triangulation, i.e. a tetrahedral network, the primitives with the highest 
dimension are tetrahedrons. A tetrahedral network is called a tetrahedralization. Using 
tetrahedrons is the easiest way in computing volumes and overlays. 
 

 
Figure 14: A triangulation (left) and a tetrahedralization (right) 

 
6.4 Valid triangulation (pp. 14) 
In most cases a valid and closed covering (triangulation) is assumed. The aim of this research 
is to conduct a solution to repair unclosed and invalid triangulations. Therefore, the following 
definition is given: 

Definition 2: rT  is a valid triangulation of Ω , if rT  is a covering following Definition 1 
and if the following conditions hold: 

 (H3) The intersection of any two elements in rT  is either 
o an empty set, 
o a vertex, 
o an edge. 
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7. Handbook of Discrete and Computational Geometry 
Goodman J. E. and O'Rourke J. (1997) Handbook of Discrete and Computational Geometry, 
Boca Raton, FL: CRC Press, pp. 377, 413, 475. 
 
7.1 Abstract 
The second edition of the Handbook of Discrete and Computational Geometry is a thoroughly 
revised version of the bestselling first edition. With the addition of 500 pages and 14 new 
chapters covering topics such as geometric graphs, collision detection, clustering, applications 
of computational geometry, and statistical applications, this is a significant update. This 
edition includes expanded coverage on the topics of mesh generation in two and three 
dimensions, aspect graphs, center points, and probabilistic roadmap algorithms. It also 
features new results on solutions of the Kepler conjecture, and honeycomb conjecture, new 
bounds on k-sets, and new results on face numbers of polytopes. 

The book provides a one-stop reference both for researchers in geometry and geometric 
computing and for professionals who use geometric tools in their work. The book covers a 
broad range of topics in discrete and computational geometry as well as numerous 
applications. The book presents results in the forms of theorems, algorithms, and tables, and 
the book addresses many important new developments in the field, including solution of the 
Kepler conjecture, results on the 2-center problem, new bounds on k-sets and geometric 
permutations, and new art gallery theorems. 
 
7.2 Definition of a triangulation (pp. 413) 
A triangulation is a partition of a geometric domain, such as a point set, polygon, or 
polyhedron, into simplices that meet only at shared faces. 
 
7.3 Definition of Delauney triangulation (pp. 377) 
The Delauney triangulation is the unique triangulation of a set of sites such that the 
circumsphere of each full-dimensional simplex has no sites in its interior. 
 
7.4 Hidden surface removal (pp. 475) 
“Hidden surface removal” is one of the key problems in computer graphics, and has been the 
focus of intense research for two decades. The typical problem instance is a collection of 
(planar) polygons in space, from which the view from z = ∞ must be constructed. 
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8. VWO Wiskunde B Samengevat 
Keemink N.C. (1993) VWO Wiskunde B Samengevat, schematisch overzicht van de 
examenstof, uitgeverij Onderwijspers BV Leiden, pp. 85-88. 
 
8.1 Abstract 
This book gives a summary of all the material of mathematics for the A level examination. In 
this research it will be used as a theoretical analytical geometry background. 
 
8.2 Method to explore the relation of an edge and a face (pp. 85-86) 
Given: edge ( ),E a b  and face ( ), ,F c d e : 

( ) ( ) ( ), , , , , ,x y z x x y y z zE x y z a a a b a b a b aλ= + − − −  (9) 

( ) ( ) ( ) ( ), , , , , , , ,x y z x x y y z z x x y y z zF x y z c c c d c d c d c e c e c e cυ τ= + − − − + − − −  (10) 

Determine normal of the face F: 

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

, , 0 , , 0

, , , , 0 , , , ,

0
( , , ), ( , , ), ( , , )

0

x x y y z z x x y y z z

x x y y z z x x y y z z

x x y y z z

x y z

x x y y z z

d c d c d c e c e c e c

a b c d c d c d c a b c e c e c e c

a d c b d c c d c
n a b c n a b c n a b c

a e c b e c c e c

⋅ − − − = ∧ ⋅ − − − = ⇒

⋅ − − − = ∧ ⋅ − − − ⇒

⎧ − + − + − =⎪ ⎡ ⎤⇒ =⎨ ⎣ ⎦− + − + − =⎪⎩

n n

n

 (11) 

choose 0, 0, 0a b c= = =  and fill in for ( ), ,x y zc c c : x x y y z zF n c n c n c f⇒ + + =  (12) 

( )
( )
( )

:
x x x

y y y

z z z

x a b a

E y a b a

z a b a

λ

λ

λ

⎧ = + −
⎪⎪ = + −⎨
⎪

= + −⎪⎩

 substitute in : x y zF n x n y n z f+ + =  gives (13) 

( )( ) ( )( ) ( )( ):

 is on 
//

one solution for  and  intersect in theory

x x x x y y y y z z z zF n a b a n a b a n a b a f

E F
E F

E F

λ λ λ

λ
λ

λ

+ − + + − + + − = ⇔

∈ ⇒⎧
⎪ ∈∅⇒⎨
⎪ ⇒⎩

 (14) 

if and only if, ( ), ,
x x

y y

z z

a x b
x y z a y b

a z b

⎧ ≤ ≤
⎪

⇒ ≤ ≤⎨
⎪ ≤ ≤⎩

 and ( )
( ) ( )
( ) ( )
( ) ( )

min , , max , ,

, , min , , max , ,

min , , max , ,

x x x x x x

y y y y y y

z z z z z z

c d e x c d e

x y z c d e y c d e

c d e z c d e

⎧ ≤ ≤
⎪⎪⇒ ≤ ≤⎨
⎪

≤ ≤⎪⎩

 (15) 

 
8.3 Method to explore the relation of two faces (pp. 87-88) 
Almost the same as above, but given two faces ( ) ( )1 2, ,  and , ,F Fa b c d e f : 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 1 1

2 2 2 2

, , , , , , , ,

, , , , , , , ,

x y z x x y y z z x x y y z z

x y z x x y y z z x x y y z z

F x y z a a a b a b a b a c a c a c a

F x y z d d d e d e d e d f d f d f d

λ υ

ρ τ

= + − − − + − − −

= + − − − + − − −
 (16) 

Determine normal of the faces: 
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( )
( )
( )

1 1 1 1 1

2 2 2 2 2

,
:

,
:

,

x y z

x y z

x y z
F n x n y n z g

y x z
F n x n y n z g

z x y

⎧
+ + =⎧ ⎪⎪ ⇔⎨ ⎨+ + =⎪ ⎪⎩

⎩

 substitute until x or y or z is free. (17) 

Define ( )
( )
( )
( )

free , ,

x

x y z y

z

µ

µ µ

µ

⎧
⎪

= ⇒ ⇒⎨
⎪
⎩

line of intersection ( ) ( ) ( ) ( ): , , , ,l x y z x y zµ µ µ⎡ ⎤= ⎣ ⎦  (18) 

with ( )
( ) ( )
( ) ( )
( ) ( )

min , , , , , max , , , , ,

, , min , , , , , max , , , , ,

min , , , , , max , , , , ,

x x x x x x x x x x x x

y y y y y y y y y y y y

z z z z z z z z z z z z

a b c d e f x a b c d e f

x y z a b c d e f y a b c d e f

a b c d e f z a b c d e f

⎧ ≤ ≤
⎪⎪⇒ ≤ ≤⎨
⎪

≤ ≤⎪⎩

 (19) 
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9. Linear algebra and its applications (Second Edition) 
Lay D.C. (1998) Linear algebra and its applications, second edition, University of Maryland, 
Addison-Wesley, pp. 133-137. 
 
9.1 Abstract 
This book contains the material for the examination of Linear Algebra at Delft University of 
Technology. In this research it will be used as a theoretical analytical geometry background, 
the function described is used in the predicates-file of TetGen. 
 
9.2 Matrix Factorization (pp. 133-137) 
A factorization of a matrix A is an equation that expresses A as a product of two or more 
matrices. Whereas matrix multiplication involves a synthesis of data (combining the effect of 
two or more linear transformations into a single matrix), matrix factorization is an analysis of 
data. In the language of computer science, the expression of A as a product amounts to a pre-
processing of the data in A, organizing that data into two or more parts whose structures are 
more useful in some way, perhaps more accessible for computation. 
 
The LU Factorization 
The LU factorization, described below, is motivated by the fairly common industrial an 
business problem of solving a sequence of equations, all with the same coefficient matrix: 

 1 2, , ..., pA A A= = =x b x b x b  (20) 

When A is invertible, one could compute -1A  and then compute -1
1A b , -1

2A b , and so on. 
However, in modern practice, the first equation in (20) is solved by row reduction, an LU 
factorization of A is obtained at the same time. Thereafter, the remaining equations in (20) are 
solved with the LU factorization. 

At first, assume A is an m × n matrix that can be row reduced to echelon form, without 
row interchanges. Then A can be written in the form A = LU, where L is an m × m lower 
triangular matrix with 1’s on the diagonal and U is an m × n echelon form of A. For instance 
see equation (21). Such a factorization is called an LU factorization of A. The matrix L is 
invertible and is called a unit lower triangular matrix. 

 

1 0 0 0 * * * *
* 1 0 0 0 * * *
* * 1 0 0 0 0 *
* * * 1 0 0 0 0

A

L U

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (21) 

Before studying how to construct L and U, we should look at why they are so useful. When 
A LU= , the equation A =x b  can be written as ( )L U =x b . Writing y for Ux , we can find x by 
solving the pair of equations. 

 
L
U

=
=

y b
x y

 (22) 

First solve L =y b  for y and then solve U =x y  for x. Each equation is easy to solve because L 
and U are triangular. 
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Example 1 It can be verified that 

 

3 7 2 2 1 0 0 0 3 7 2 2
3 5 1 0 1 1 0 0 0 2 1 2
6 4 0 5 2 5 1 0 0 0 1 1
9 5 5 12 3 8 3 1 0 0 0 1

A LU

− − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (23) 

 Use this LU factorization of A to solve A =x b , where 

9
5
7

11

−⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

b . 

 
Solution The solution of L =y b  needs only 6 multiplications and 6 additions, because 
the arithmetic takes place only in column 5. (The zeros below each pivot in L are created 
automatically by our choice of row operations.) 

 [ ] [ ]

1 0 0 0 9 1 0 0 0 9
1 1 0 0 5 0 1 0 0 4
2 5 1 0 7 0 0 1 0 5
3 8 3 1 11 0 0 0 1 1

L I

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

b y∼  (24) 

Then, for U =x y , the “backwards” phase of row reduction requires 4 divisions, 6 
multiplications, and 6 additions. (For instance, creating zeros in column 4 of [ ]U y  requires 
1 division in row 4 and 3 multiplication-addition pairs to add multiples of row 4 to the rows 
above.) 

 [ ]

3 7 2 2 9 1 0 0 0 3 3
0 2 1 2 4 0 1 0 0 4 4

,  
0 0 1 1 5 0 0 1 0 6 6
0 0 0 1 1 0 0 0 1 1 1

U

− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

y x∼  (25) 

To find x requires 28 arithmetic operations, excluding the cost of finding L and U. In contrast, 
row reduction of [ ]A b  to [ ]I x  takes 62 operations. The computational efficiency of the 
LU factorization depends on knowing L and U. The next algorithm shows that the row 
reduction of A to an echelon form U amounts to an LU factorization because it produces L 
with essentially no extra work. After the first row reduction, L and U are available for solving 
additional equations whose coefficient matrix is A. 
 
An LU Factorization Algorithm 
Suppose A can be reduced to an echelon form U without row interchanges. Then, since row 
scaling is not essential, A can be reduced to U with only row replacements, adding a multiple 
of one row to another row below it. In this case, there exist unit lower triangular elementary 
matrices 1,..., pE E  such that 

 1pE E A U=  (26) 
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Then 

 ( ) 1

1pA E E U LU
−

= =  (27) 

Where 

 ( ) 1

1pL E E
−

=  (28) 

It can be shown that products and inverses of unit lower triangular matrices are also unit 
lower triangular. Thus L is unit lower triangular. Note that the row operations in (26), which 
reduce A to U, also reduce the L in (27) to I, because ( )( ) 1

1 1 1p p pE E L E E E E I
−

= = . This 
observation is the key to constructing L. 
 
Thus, the algorithm for an LU factorization is: 

1. Reduce A to an echelon form U by a sequence of row replacement operations, if 
possible. 

2. Place entries in L such that the same sequence of row operations reduces L to I. 
 
Step 1 is not always possible, but when it is, the argument above shows that an LU 
factorization exists. Example 2 will show how to implement step 2. By construction, L will 
satisfy 

 ( )1pE E L I=  (29) 

using the same 1,..., pE E  as in (21). Thus L will be invertible, by the Invertible Matrix 

Theorem, with ( ) 1

1pE E L
−
= . From (21), 1L A U− = , and A LU= . So step 2 will produce an 

acceptable L. 
 
Example 2 Find an LU factorization of 

 

2 4 1 5 2
4 5 3 8 1
2 5 4 1 8
6 0 7 3 1

A

− −⎡ ⎤
⎢ ⎥− − −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥
− −⎣ ⎦

 (30) 

Solution Since A has four rows, L should be 4 4× . The first column of L is the first 
column of A divided by the top pivot entry: 

 

1 0 0 0
2 1 0 0
1 1 0
3 1

L

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥
−⎣ ⎦

 (31) 

Compare the first columns of A and L. The row operations that create zeros in the first 
column of A will also create zeros in the first column of L. We want this same correspondence 
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of row operations to hold for the rest of L, so we watch a row reduction of A to an echelon 
form U: 

 

1

2

4 1 5 2 4 1 5 2
4 5 3 8 1 0 1 2 3
2 5 4 1 8 0 9 3 4 10
6 0 7 3 1 0 12 4 12 5

4 1 5 2 4 1 5 2
0 1 2 3 0 1 2 3
0 0 0 1 0 0 0 1
0 0 0 4 7 0 0 0 0

A A

A U

− − − −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − − −⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥− − − − −
⎢ ⎥ ⎢ ⎥
− − −⎣ ⎦ ⎣ ⎦

− − − −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

2 2
3

2 2
3 3

2 2
5

∼

∼ ∼

 (32) 

The bold-italic entries above determine the row reduction of A to U. At each pivot column, 
divide the bold-italic entries by the pivot and place the result into L: 

 

[ ]

2
34
92 2

5126 4
 2  3   2 5

1 1 0 0 0
2 1 2 1 0 0

           , and 
1 3 1 1 3 1 0
3 4 2 1 3 4 2 1

L

⎡ ⎤
⎢ ⎥− ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ − ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦
÷ ÷ ÷ ÷
↓ ↓ ↓ ↓

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥
− −⎣ ⎦ ⎣ ⎦

 (33) 

An easy calculation verifies that this L and U satisfy A LU= . 
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10. Computational Geometry in C (Second Edition) 
O'Rourke J. (1998) Computational Geometry in C (Second Edition), Cambridge University 
Press, Cambridge, see http://cs.smith.edu/~orourke/, pp. 220-238. 
 
10.1 Abstract 
This is the newly revised and expanded edition of the popular introduction to the design and 
implementation of geometry algorithms arising in areas such as computer graphics, robotics, 
and engineering design. The second edition contains material on several new topics, such as 
randomized algorithms for polygon triangulation, planar point location, 3D convex hull 
construction, intersection algorithms for ray-segment and ray-triangle, and point-in-
polyhedron. A new "Sources" chapter points to supplemental literature for readers needing 
more information on any topic. A novel aspect is the inclusion of working C code for many of 
the algorithms, with discussion of practical implementation issues. The self-contained 
treatment presumes only an elementary knowledge of mathematics, but reaches topics on the 
frontier of current research, making it a useful reference for practitioners at all levels. The 
code in this new edition is significantly improved from the first edition, and four new routines 
are included. Java versions for this new edition are also available. 
 
The seventh chapter of the book (O’Rourke, 1998) examines several problems that can be 
loosely classified as involving search or intersection (or both). This is a vast, well-developed 
topic, and O’Rourke makes no attempt at systematic coverage. The chapter starts with to 
constant-time computations: intersecting two segments (lines) and intersecting a segment with 
a triangle. Implementations are present for both tasks. These two computations will be used in 
this research. In the code of Si (2004) only the second step is implemented, it is my job to 
implement the first step too. 
 
10.2 Segment-segment intersection (pp. 220-226) 
In the first chapter of the book (O’Rourke, 1998) there is spent some time developing a code 
that detects intersection between two segments for use in triangulation, there is never bothered 
to compute the point of intersection. It was not needed in the triangulation algorithm, and it 
would have forced them to leave the comfortable world of integer coordinates. For many 
applications, however, the floating-point coordinates of the point of intersection are needed. It 
is not too difficult to compute the intersection point (although there are potential pitfalls), and 
the necessary floating-point calculations are not as problematical here as they sometimes are. 
In this section the code for this task is developed (see O’Rourke, 1998), I will only report the 
resulting code. 
 

Code 1: SegSegInt 

/*--------------------------------------------------------------------- 
SegSegInt: Finds the point of intersection p between two closed 
segments ab and cd.  Returns p and a char with the following meaning: 
   'v': An endpoint (vertex) of one segment is on the other segment, 
        but 'e' doesn't hold. 
   '1': The segments intersect properly (i.e., they share a point and 
        neither 'v' nor 'e' holds). 
   '0': The segments do not intersect (i.e., they share no points). 
Note that two collinear segments that share just one point, an endpoint 
of each, returns 'e' rather than 'v' as one might expect. 
---------------------------------------------------------------------*/ 
char SegSegInt( tPointi a, tPointi b, tPointi c, tPointi d, tPointd p ) 
{ 
   double  s, t;       /* The two parameters of the parametric eqns. */ 
   double num, denom;  /* Numerator and denoninator of equations. */ 
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   char code = '?';    /* Return char characterizing intersection. */ 
 
   denom = a[X] * (double)( d[Y] - c[Y] ) + 
           b[X] * (double)( c[Y] - d[Y] ) + 
           d[X] * (double)( b[Y] - a[Y] ) + 
           c[X] * (double)( a[Y] - b[Y] ); 
 
   /* If denom is zero, then segments are parallel: handle separately. */ 
   if (denom == 0.0) 
      return  ParallelInt(a, b, c, d, p); 
 
   num =    a[X] * (double)( d[Y] - c[Y] ) + 
            c[X] * (double)( a[Y] - d[Y] ) + 
            d[X] * (double)( c[Y] - a[Y] ); 
   if ( (num == 0.0) || (num == denom) ) code = 'v'; 
   s = num / denom; 
   printf("num=%lf, denom=%lf, s=%lf\n", num, denom, s); 
 
   num = -( a[X] * (double)( c[Y] - b[Y] ) + 
            b[X] * (double)( a[Y] - c[Y] ) + 
            c[X] * (double)( b[Y] - a[Y] ) ); 
   if ( (num == 0.0) || (num == denom) ) code = 'v'; 
   t = num / denom; 
   printf("num=%lf, denom=%lf, t=%lf\n", num, denom, t); 
 
   if      ( (0.0 < s) && (s < 1.0) && 
             (0.0 < t) && (t < 1.0) ) 
     code = '1'; 
   else if ( (0.0 > s) || (s > 1.0) || 
             (0.0 > t) || (t > 1.0) ) 
     code = '0'; 
 
   p[X] = a[X] + s * ( b[X] - a[X] ); 
   p[Y] = a[Y] + s * ( b[Y] - a[Y] ); 
 
   return code; 
} 

 
With this code it is not possible to determine if segments are overlapping, therefore below 
code has to be added. 
 

Code 2: ParallelInt 

/*--------------------------------------------------------------------- 
ParallelInt: Finds if the segments ab and cd collinearly overlap. Returns a 
char with the following meaning: 
   'e': The segments collinearly overlap, sharing a point. 
   '0': The segments do not intersect (i.e., they share no points). 
Note that two collinear segments that share just one point, an endpoint 
of each, returns 'e' rather than 'v' as one might expect. 
---------------------------------------------------------------------*/ 
char ParallelInt( tPointi a, tPointi b, tPointi c, tPointi d, tPointd p ) 
{ 
   if ( !Collinear( a, b, c) ) 
      return '0'; 
 
   if ( Between( a, b, c ) ) { 
      Assigndi( p, c ); 
      return 'e'; 
   } 
   if ( Between( a, b, d ) ) { 
      Assigndi( p, d ); 
      return 'e'; 
   } 
   if ( Between( c, d, a ) ) { 
      Assigndi( p, a ); 
      return 'e'; 
   } 
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   if ( Between( c, d, b ) ) { 
      Assigndi( p, b ); 
      return 'e'; 
   } 
   return '0'; 
} 
void Assigndi( tPointd p, tPointi a ) 
{ 
   int i; 
   for ( i = 0; i < DIM; i++ ) 
      p[i] = a[i]; 
} 
 
/*--------------------------------------------------------------------- 
Returns TRUE iff point c lies on the closed segement ab. 
Assumes it is already known that abc are collinear. 
---------------------------------------------------------------------*/ 
bool Between( tPointi a, tPointi b, tPointi c ) 
{ 
   tPointi      ba, ca; 
 
   /* If ab not vertical, check betweenness on x; else on y. */ 
   if ( a[X] != b[X] ) 
      return ((a[X] <= c[X]) && (c[X] <= b[X])) || 
             ((a[X] >= c[X]) && (c[X] >= b[X])); 
   else 
      return ((a[Y] <= c[Y]) && (c[Y] <= b[Y])) || 
             ((a[Y] >= c[Y]) && (c[Y] >= b[Y])); 
} 
 
Int Collinear( tPointi a, tPointi b, tPointi c ) 
{ 
   return AreaSign( a, b, c ) == 0; 
} 
int AreaSign( tPointi a, tPointi b, tPointi c ) 
{ 
    double area2; 
 
    area2 = ( b[0] - a[0] ) * (double)( c[1] - a[1] ) - 
            ( c[0] - a[0] ) * (double)( b[1] - a[1] ); 
 
    /* The area should be an integer. */ 
    if      ( area2 >  0.5 ) return  1; 
    else if ( area2 < -0.5 ) return -1; 
    else                     return  0; 
} 

 
10.3 Segment-triangle intersection (pp. 226-238) 
Let us turn to the more difficult, but still ultimately straightforward, computation of the point 
of intersection between a segment and a triangle in three dimensions. In fact this is one of the 
most prevalent geometric computations performed today, because it is a key step in “ray 
tracing” used in computer graphic: finding the intersection between a light ray and a 
collection of polygons in space. O’Rourke will again use a parametric representation to derive 
the equations. Throughout he will let T abc= ∆  be the triangle and qr  the segment, where q is 
viewed as the originating (“query”) endpoint in case qr  represents a ray and r is the “ray” 
endpoint. He assumed throughout that r q≠ , so the input segment has nonzero length. The 
computation process is divided in steps. Before one can really start, the triangles in space have 
to be defined. 
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Code 3: Type definitions for triangles in space 

#define X 0 
#define Y 1 
#define Z 2 
#define DIM 3   /* Dimension of points */ 
typedef int tPointi[DIM]; /* Type integer point */ 
typedef double tPointd[DIM]; /* Type double point */ 
#define PMAX 10000  /* Max # of pts */ 
tPointi Vertices[PMAX];  /* All the points */ 
tPointi Faces[PMAX];  /* Each triangle face is 3 indices */ 
 
main() 
{ 
   int V, F; 
    
   V = ReadVertices(); 
   F = ReadFaces(); 
   /* Processing */ 
} 

 
Segment-plane intersection 
The first step is to determine if qr  intersects the plane π  containing T . The work is 
partitioned in two procedures, the first, PlaneCoeff, computes N (the Normal of the plane π ) 
and D (if N is a vector of unit length, then D is the distance from the origin to π ) 
 

Code 4: PlaneCoeff 

/*--------------------------------------------------------------------- 
Computes N & D and returns index m of largest component. 
---------------------------------------------------------------------*/ 
int PlaneCoeff( tPointi T, tPointd N, double *D ) 
{ 
   int i; 
   double t;   /* Temp storage */ 
   double biggest = 0.0; /* Largest component of normal vector.*/ 
   int m = 0;   /* Index of largest component. */ 
    
   NormalVec( Vertices[T[0]] , Vertices[T[1]] , Vertices[T[2]], N ); 
   *D = Dot( Vertices[T[0]], N ); 
 
   /* Find the largest component of N. */ 
   for ( i = 0; i < DIM; i++ ) { 
      t = fabs(N[i] ); 
      if ( t > biggest ) { 
         biggest = t; 
         m = i; 
      } 
   }  
   return m; 
} 

 
Code 5: Vector utility functions. 

/*--------------------------------------------------------------------- 
Compute the cross product of (b-a)x(c-a) and place into N. 
---------------------------------------------------------------------*/ 
void NormalVec( tPointi a, tPointi b, tPointi c, tPointd N ) 
{ 
   N[X]=( c[Z] - a[Z] ) * ( b[Y] - a[Y] ) – 
        ( b[Z] - a[Z] ) * ( c[Y] – a[Y] ); 
   N[Y]=( b[Z] - a[Z] ) * ( c[X] - a[X] ) – 
        ( b[X] - a[X] ) * ( c[Z] - a[Z] ); 
   N[Z]=( b[X] - a[X] ) * ( c[Y] - a[Y] ) – 
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        ( b[Y] - a[Y] ) * ( c[X] - a[X] ); 
} 
 
/*--------------------------------------------------------------------- 
Returns the dot product of the two input vectors. 
---------------------------------------------------------------------*/ 
double Dot( tPointi a, tPointd b ) 
{ 
   int i; 
   double sum = 0.0; 
 
   for( i = 0; i < DIM; i++ ) 
      sum += a[i] * b[i]; 
   return sum; 
} 
 
/*--------------------------------------------------------------------- 
a - b ==> c. 
---------------------------------------------------------------------*/ 
void SubVec( tPointi a, tPointi b, tPointi c ) 
{  
   int i; 
 
   /* a-b => c. */ 
   for( i = 0; i < DIM; i++ ) 
      c[i] = a[i] - b[i]; 
} 

 
O’Rourke now follows the convention established in the segment-segment intersection. The 
intersection procedure returns a code to classify the intersection. 
 

Code 6: SegPlaneInt 

/*--------------------------------------------------------------------- 
    'p': The segment lies wholly within the plane. 
    'q': The q endpoint is on the plane (but not 'p'). 
    'r': The r endpoint is on the plane (but not 'p'). 
    '0': The segment lies strictly to one side or the other of the plane. 
    '1': The segment intersects the plane, and 'p' does not hold. 
---------------------------------------------------------------------*/ 
char SegPlaneInt( tPointi T, tPointi q, tPointi r, tPointd p, int *m) 
{ 
   tPointd N; double D; 
   tPointi rq; 
   double num, denom, t; 
   int i;  
 
   *m = PlaneCoeff( T, N, &D ); 
   num = D - Dot( q, N ); 
   SubVec( r, q, rq ); 
   denom = Dot( rq, N ); 
 
   if ( denom == 0.0 ) { /* Segment is parallel to plane. */ 
      if ( num == 0.0)  /* q is on plane. */ 
         return 'p'; 
      else 
         return '0'; 
   } 
   else 
      t = num / denom; 
 
   for( i = 0; i < DIM; i++ ) 
      p[i] - q[i] + t * ( r[i] - q[i] ); 
 
   if ( (0.0 < t) && (t < 1.0) ) 
      return '1'; 
   else if ( num == 0.0 )  /* t == 0 */ 
      return 'q'; 
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   else if ( num == denom) /* t == 1 */ 
      return 'r'; 
   else return '0'; 
} 

 
Segment-triangle classification 
Now that point p of the intersection between the segment qr  and the plane π  containing the 
triangle T  is determined, it only remains to classify the relationship between p and T: Is it 
inside or out, on a boundary, at a vertex? Although this may be a simple task, there are some 
subtleties. Only the resulting code is reported. 
 

Code 7: InTri3D 

/*------------------------------------------------------------------- 
Assumption: p lies in the plane containing T. Returns a char: 
  'V': the query point p coincides with a Vertex of triangle T. 
  'E': the query point p is in the relative interior of an Edge of T. 
  'F': the query point p is in the relative interior of a Face of T. 
  '0': the query point p does not intersect (misses) triangle T. 
---------------------------------------------------------------------*/ 
char InTri3D( tPointi T, int m, tPointi p ) 
{  
   int i;  /* Index for X,Y,Z */ 
   int j;  /* Index for X,Y */ 
   int k;  /* Index for triangle vertex */ 
   tPointi pp;  /* projected p */ 
   tPointi Tp[3]; /* projected T: Three new vertices */ 
 
   /* Project out coordinate m in both p and the triangular face */ 
   j = 0; 
   for( i = 0; i < DIM; i ++ ) { 
      if ( i !=  m ) { /* skip largest coordinate */ 
         pp[j] = p[i]; 
         for ( k = 0; k < 3; k++ ) 
            Tp[k][j] = Vertices[T[k]][i]; 
         j++; 
      } 
   } 
   return ( InTri2D( Tp, pp ) ); 
} 

 
Code 8: InTri2D 

/*--------------------------------------------------------------------- 
compute three AreaSign() values for pp w.r.t. each edge of the face in 2D 
---------------------------------------------------------------------*/  
char InTri2D( tPointi Tp[3], tPointi pp ) 
{ 
   int area0, area1, area2; 
 
   area0 = AreaSign( pp, Tp[0], Tp[1] ); 
   area1 = AreaSign( pp, Tp[1], Tp[2] ); 
   area2 = AreaSign( pp, Tp[2], Tp[0] );  
 
   if ( ( area0 == 0 ) && ( area1 > 0 ) && ( area2 > 0 )|| 
        ( area1 == 0 ) && ( area0 > 0 ) && ( area2 > 0 )|| 
        ( area2 == 0 ) && ( area0 > 0 ) && ( area1 > 0 )) 
      return 'E'; 
 
   if ( ( area0 == 0 ) && ( area1 < 0 ) && ( area2 < 0 )|| 
        ( area1 == 0 ) && ( area0 < 0 ) && ( area2 < 0 )|| 
        ( area2 == 0 ) && ( area0 < 0 ) && ( area1 < 0 )) 
      return 'E'; 
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   if ( ( area0 > 0 ) && ( area1 > 0 ) && ( area2 > 0 )|| 
        ( area1 < 0 ) && ( area1 < 0 ) && ( area2 < 0 )) 
      return 'F'; 
 
   if ( ( area0 == 0 ) && ( area1 == 0 ) && ( area2 == 0 ) ) 
      fprintf( stderr, "Error in InTriD\n" ), 
         exit (EXIT_FAILURE); 
 
   if ( ( area0 == 0 ) && ( area1 == 0 )|| 
        ( area0 == 0 ) && ( area2 == 0 )|| 
        ( area1 == 0 ) && ( area2 == 0 ) ) 
      return 'V'; 
 
   else 
      return '0'; 
} 

 
Code 9: SegTriCross 

/*--------------------------------------------------------------------- 
The signed volumes of three tetrahedra are computed, determined 
by the segment qr, and each edge of the triangle.   
Returns a char: 
   'v': the open segment includes a vertex of triangle T. 
   'e': the open segment includes a point in the relative interior of an 
        edge of triangle T. 
   'f': the open segment includes a point in the relative interior of a 
        face of triangle T. 
   '0': the open segment does not intersect triangle T. 
---------------------------------------------------------------------*/ 
char SegTriCross( tPointi T, tPointi q, tPointi r ) 
{ 
   int vol0, vol1, vol2; 
 
   vol0 = VolumeSign( q, Vertices [ T[0] ], Vertices[ T[1] ], r ); 
   vol1 = VolumeSign( q, Vertices [ T[1] ], Vertices[ T[2] ], r ); 
   vol2 = VolumeSign( q, Vertices [ T[2] ], Vertices[ T[0] ], r ); 
 
   /* Same sign: segment intersects interior of triangle. */ 
   if ( ( ( vol0 > 0 ) && ( vol1 > 0 ) && ( vol2 > 0 ) )|| 
        ( ( vol0 < 0 ) && ( vol1 < 0 ) && ( vol2 < 0 ) ) ) 
      return 'f'; 
 
   /* Opposite sign: no intersection between segment and triangle. */ 
   if ( ( ( vol0 > 0) || ( vol1 > 0 ) || ( vol2 > 0 ) ) && 
        ( ( vol0 < 0) || ( vol1 < 0 ) || ( vol2 < 0 ) ) ) 
      return '0'; 
 
   else if ( ( vol0 == 0 ) && ( vol1 == 0 ) && ( vol2 == 0 ) ) 
      fprintf( stderr, "Error 1 in SegTriCross\n" ), 
      exit (EXIT_FAILURE); 
 
   /* Two zeros: segment intersects vertex. */ 
   else if ( ( ( vol0 == 0 ) && ( vol1 == 0 ) ) || 
             ( ( vol0 == 0 ) && ( vol2 == 0 ) ) || 
             ( ( vol1 == 0 ) && ( vol2 == 0 ) ) ) 
      return 'v'; 
 
   /* One zero: segment intersects edge. */ 
   else if ( ( vol0 == 0 ) || ( vol1 == 0) || ( vol2 == 0 ) ) 
      return 'e'; 
 
   else  
      fprintf( stderr, "Error 2 in SegTriCross\n" ), 
      exit (EXIT_FAILURE); 
} 
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Code 10: SegTriInt 

char SegTriInt( tPointi T, tPointi q, tPointi r, tPointd p ) 
{  
   int code; 
   int m; 
 
   code = SegPlaneInt( T, q, r, p, &m ); 
 
   if ( code == 'q') 
      return InTri3D( T, m, q ); 
   else if ( code == 'r') 
      return InTri3D( T, m, r ); 
   else if ( code == 'p') 
      return InPlane( T, m, q, r, p ); 
   else 
      return SegTriCross( T, q, r ); 
   else /* Error */ 
      return code; 
} 
 
char InPlane( tPointi T, int m, tPointi q, tPointi r, tPointd p) 
{ 
    /* NOT IMPLEMENTED */ 
    return 'p'; 
} 
 

 
Also needed are below codes, these are treated earlier in the book. 
 

Code 11: AreaSign 

/*--------------------------------------------------------------------- 
compute three AreaSign() values for pp w.r.t. each edge of the face in 2D. 
---------------------------------------------------------------------*/ 
int     AreaSign( tPointi a, tPointi b, tPointi c )   
{ 
    double area2; 
 
    area2 = ( b[0] - a[0] ) * (double)( c[1] - a[1] ) - 
            ( c[0] - a[0] ) * (double)( b[1] - a[1] ); 
 
    /* The area should be an integer. */ 
    if      ( area2 >  0.5 ) return  1; 
    else if ( area2 < -0.5 ) return -1; 
    else                     return  0; 
} 

 
Code 12: VolumeSign 

int  VolumeSign( tPointi a, tPointi b, tPointi c, tPointi d ) 
{  
   double vol; 
   double ax, ay, az, bx, by, bz, cx, cy, cz, dx, dy, dz; 
   double bxdx, bydy, bzdz, cxdx, cydy, czdz; 
 
   ax = a[X]; 
   ay = a[Y]; 
   az = a[Z]; 
   bx = b[X]; 
   by = b[Y]; 
   bz = b[Z]; 
   cx = c[X];  
   cy = c[Y]; 
   cz = c[Z]; 
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   dx = d[X]; 
   dy = d[Y]; 
   dz = d[Z]; 
 
   bxdx=bx-dx; 
   bydy=by-dy; 
   bzdz=bz-dz; 
   cxdx=cx-dx; 
   cydy=cy-dy; 
   czdz=cz-dz; 
   vol =   (az-dz) * (bxdx*cydy - bydy*cxdx) 
         + (ay-dy) * (bzdz*cxdx - bxdx*czdz) 
         + (ax-dx) * (bydy*czdz - bzdz*cydy); 
 
 
   /* The volume should be an integer. */ 
   if      ( vol > 0.5 )   return  1; 
   else if ( vol < -0.5 )  return -1; 
   else                    return  0; 
} 
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11. About Invalid, Valid and Clean Polygons 
Oosterom P., Quak W., Thijssen T. () About Invalid, Valid and Clean Polygons. 
 
11.1 Abstract 
Spatial models are often based on polygons both in 2D and 3D. Many Geo-ICT products 
support spatial data types, such as the polygon, based on the OpenGIS “Simple Feature 
Specification”. OpenGIS and ISO have agreed to harmonize their specifications and 
standards. In this paper the relevant aspects related to polygons in these standards are 
discussed and several implementations are compared. A quite exhaustive set of test polygons 
(with holes) has been developed. The test results reveal significant differences in the 
implementations, which causes interoperability problems. Part of these differences can be 
explained by different interpretations (definitions) of the OpenGIS and ISO standards (do not 
have an equal polygon definition). Another part of these differences is due to typical 
implementations issues, such as alternative methods for handling tolerances. Based on these 
experiences the authors propose an unambiguous definition for polygons, which makes 
polygons again the stable foundation it is supposed to be in spatial modelling and analysis. 
Valid polygons are well defined, but as they may still cause problems during data transfer, 
also the concept of (valid) clean polygons is defined. This paper is not of great interest, 
because triangles are by definition already valid (clean). 
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12. Topological models for 3D spatial information systems 
Pigot S. (1991) Topological models for 3D spatial information systems, In: D. M. Mark and 
D. White (Eds.), Auto Carto 10, Baltimore, MD, pp. 374-377, 381-387. 
 
12.1 Abstract 
The need for complex modelling and analysis of 3D data within a spatial information system 
(SIS) has been established in many fields While much of the data that is currently being 
modelled seems to require “soft-edge” data structures such as grids or rasters, the need for 
certain types of complex topological modelling and analysis is clear. Current plane topology 
models such as winged edge, widely used in computer aided design (CAD), are limited in the 
types of analysis that can be performed but useful because of their basis in the field of 
algebraic topology. This paper firstly reviews the neighbourhood structure provided by 
current plane topological models. It then describes the derivation of a fundamental set of 
binary topological relationships between simple spatial primitives of like topological 
dimension in 3D. It is intended that these relationships provide both a measure of modelling 
sufficiency and analytical ability in a spatial information system based on three dimensional 
neighbourhoods. 
 
12.2 Theory (pp. 374-377) 
What topological relationships may exist between abstract geometric primitives in Euclidean 
3-space? To answer a detailed question about the nature and type of all topological 
relationships is an attempt to classify the types and situations of manifolds. This is possible 
for R1 (1-space) and R2 (2-space) however, R3 (3-space) has a number of quite difficult and 
unexpected situations which make general classification very difficult. Fortunately, it is not 
necessary to attempt this. A number of assumptions about the nature of the relationships and 
the geometry of the n-cells involved can be made without limiting the power and application 
of the derived relationships. Specifically, only binary topological relationships between 
closed, connected (genus 0 – no internal holes) n-simplexes will be considered. The use of 
simplexes rather that cells is intuitive; simplicial complex theory is the starting point for the 
more generalized and advanced cell complex theory. Cells can be decomposed into simplexes 
in what is termed a simplicial decomposition, thus the results derived using simplicial 
complex theory can be generalized to cell complex theory via the decomposition. 

Point-set topology (classical topology) provides a much more intuitive view of 
topological relationships. In the paper of Pigot (1991), point-set binary topological 
relationships between 1-simplexes in R3, 2-simplexes in R3 and 3-simplexes in R3 are based 
on the consideration of the fundamental boundary, interior and exterior point-sets of any n-
simplex in Rn. Additional point-sets are formed generically by embedding the n-simplex and 
its fundamental point-sets for Rn, within Rn+1. Consideration of the possible intersections of 
these point-sets with the boundary point-set of a second n-simplex then gives the fundamental 
topological relationships. The relationships are point-set topological relationships because 
they are derived from the intersection of these fundamental point-sets only. 

In all of the following discussion, a 1-simplex is called an interval, a 2-simplex is called 
a face and a 3-simplex is called a volume. 

 
Theoretical Background 
All results used and derived in this section are for metric topological spaces since metric 
topological spaces are most commonly used for modelling purposes. Metric topological 
spaces are a subset of general topological spaces. An n-simplex in Rn divides Rn into three 
useful and intuitive point-sets, well known in point-set topology. 
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- Interior set º of an n-simplex C: a point x is an interior point of C provided there exist 
an open subset U such that x is an element of U and U is strictly contained within C. 
The union of all such points is the interior set. 

- Boundary set ∂ of an n-simplex C: ∂C = C - Cº 
- Exterior set of an n-simplex C: complement of C 

  
A simple and complete method can be found for finding all topological relationships between 
closed, connected n-simplexes. In the paper of Pigot (1991), a powerful and fundamental 
method is used which is based on the set intersection of the boundary, interior and exterior 
point-sets of an n-simplex n1 and the boundary, interior and exterior sets of another n-simplex 
n2 in Rn. In the paper, the generic term set is used in place of point-set. The theory can now be 
summarized in five steps as follows: 

1. Formulate the boundary, interior and exterior sets of an n-simplex n1 in Rn. 
2. Derive basic relationships based on all possible set intersections of the boundary set 

of a second n-simplex n2 and the interior, boundary and exterior sets of the n-simplex 
n1 from step 1. 

3. Consider the union of the interior, exterior and boundary sets of any n-simplex in Rn 
as an n-manifold equivalent to Rn with the definition of the open/closed properties of 
these sets strictly relative to Rn. 

4. Disconnect Rn+1 into two new open sets by choosing an embedding of Rn (created in 
step 3) in Rn+1 such that the n orthogonal basis vectors of Rn are coincident with n of 
the n+1 orthogonal basis vectors of Rn+1. 

5. Derive additional relationships based on the possible set intersections of the 
boundary set of an n-simplex n2 with the boundary, interior and exterior sets of a 
second n-simplex n1, with the boundary set of n2 intersecting either or both of the 
two new sets predicted in step 4. 

 
12.3 Faces (2-simplexes) (pp. 381-387) 
The boundary, interior and exterior sets of a face (or 2-simplex) all in R2 are shown in Figure 
15. 
 

 
Figure 15: Exterior (A), Boundary (B) and Interior (C) point-sets of a face in R2 

 
Note that there is a single closed boundary set (B), a single open exterior set (A) and a single 
open interior set (C). The union of sets A, B and C is a 2-manifold equivalent to R2.  All 
possible binary topological relationships between faces in R2 can then be derived from the 
possible set relationships between the boundary, interior and exterior sets A, B and C of a1 
and the boundary set X of a2. e.g. if the boundary set X of a2 is contained within the interior 
set C, then the face a2 will he contained within a1. The combinations matrix showing the 
possible relationships between the boundary of the face a2 and the exterior, boundary and 
interior sets A, B and C of a1 is shown in Table 2. 
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Table 2: Set intersection relationships between the boundary set of a2 and the interior, 
exterior and boundary sets of a1 in R2. 

Exterior A X   X  X X
        
Boundary A  X  X X X  
        
Interior A   X X X  X

 
Note that the seventh relationship in the last column of the table is not possible in R2 because 
of the restriction to closed, connected faces. The six distinct relationships, their names and 
spatial interpretations are shown in Figure 16.  
 

 
Figure 16: Six possible relationships between faces based on the intersection of the boundary 

set of face a2 and the exterior, boundary and interior sets of face a1 in R2. 
 
If we define the open/closed properties of these sets strictly relative to R2 then these properties 
and the set relationships in R2 are preserved when the 2-manifold (equivalent to R2) formed by 
their union is embedded in R3. If the embedding is chosen such that any two orthogonal basis 
vectors of R2 are coincident to two of any three orthogonal basis vectors of R3 then R2 
disconnects R3 info two open sets with the third open set corresponding to R2 itself. The 
situation is shown in Figure 17.  
 

 
Figure 17: New point sets D & E obtained by embedding the union of the boundary (B), 

exterior (A) and interior (C) of a face a1 in R3 ( 2A B C R∪ ∪ = ). 
 
All possible binary topological relationships between faces in R3 can be derived in the same 
way as for R2, by considering the possible set relationships between boundary set of a face a2 
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and the boundary, interior and exterior sets of the face a1 plus the two new sets D and E which 
result from embedding R2 in R3. Since all set relationships derived for R2 are preserved in R3, 
only the combinations involving the new sets D and E will be considered. 

By examination of Figure 17, the set relationships can be divided into two groups. The 
first group represents the situation where the boundary set X of a2 is contained within the 
plane P formed from the union of the interior, exterior and boundary sets of a1. This situation 
corresponds to faces in R2 and was considered above. The second group corresponds to the 
situation where the boundary set X of a2 intersects either D or E but not both. This 
corresponds to the spatial situation where a2 is completely on one side of the plane P formed 
by the boundary, interior and exterior sets A, B and C of a1. In this situation, the boundary set 
X of a2 may intersect the plane P and hence the boundary, interior and exterior sets A, B and 
C or not at all. All combinations are shown in Table 3. 

 
Table 3: Set intersections between the boundary set X of a2 and the interior (A), exterior (B) 

and boundary (C) sets of a1 in R3 when a1 intersects only one of the sets D or E 
 1 2 3 4 5 6 7 8 
Exterior A    X  X X X
         
Boundary A   X  X X  X
         
Interior A  X   X  X X
Above D         
 X X X X X X X X
Below E         

 
 

 
Figure 18: Relationships formed by the intersection of the boundary set X of a face a2 with the 

boundary, interior and exterior sets (A, B and C) of a face a1 when the boundary set of the 
face intersects the point-set D (or E). a2 is shown shaded, however only the black outline is 

the boundary set of a2. 
 
Since the topological relationships are the same no matter which set D or E on either side of 
the plane P the boundary set of a2 intersects, the combinations are shown in the table with the 
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marker offset between D and E. Note that relationship 7 is not possible between two closed 
connected simplexes. The other seven relationships are shown spatially in Figure 18.  

The third group of relationships occurs when the boundary set X of a2 intersects both D 
and E and hence must intersect the sets A, B and C of a1 at an interval whose boundaries 
correspond to two points from the boundary set X of a2 and interior corresponds to the interior 
set Y of a2. The possible combinations between the boundary set X of a2 and the boundary, 
interior and exterior sets A, B and C of a1 when the boundary set X intersects both D and E as 
well, are shown in Table 4.  
 
Table 4: Set Intersections between the boundary of set X of a2 and the exterior (A), boundary 
(B) and interior (C) sets of a1 in R3 when the boundary of a2 intersects both of the sets D and 

E. 
 9 10 11 12 13 14 15
Exterior A   X  X X X 
        
Boundary A  X  X X  X 
        
Interior A X   X  X X 
Above D X X X X X X X 
        
Below E X X X X X X X 

  

 
Figure 19: Relationships formed by the intersection of the boundary set X of a face a2 with die 

boundary, interior and exterior sets (A, B and C) of a face a1 when the boundary set of the 
face intersects both point-sets D and E (passes through the plane P formed from the union of 
the boundary, interior and exterior sets of a1).  Although a2 is shown shaded, only the black 

outline is the boundary set. 
 
The spatial interpretations are shown in Figure 19. Note that for relationship 10 in column 
two, the interior set of the face a2 may be used to derive a second possibility. These 
relationships are marked 10a and 10b in the spatial interpretations of these relationships, 
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shown in Figure 19. In addition, relationship 14 is not possible between closed, connected 
faces. 

By examination of all relationships in Figure 16, Figure 18 and Figure 19, the number 
of unique relationships between faces in R3 is fourteen since relationships 1, 4 and 11 are 
particular types of the disjoint relationship shown in Figure 16 and relationships 3, 6 and 13 
are particular types of the meet relationship shown in Figure 16. 

To reduce these fourteen relationships in detail, the union of the boundary and interior 
points-sets of a1 and a2 in each relationship is considered. Relationships which are 
homeomorphic can then be reduced to their homeomorphs. Thus, the complete two layer 
hierarchy of binary topological relationships between faces (2-simplexes) in R3 is shown in 
Figure 20.  
 

 
Figure 20: Hierarchy of topological relationships between faces in R3. 
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13. A topological model for a 3D spatial information system 
Pigot S. (1992) A topological model for a 3D spatial information system, in Proceedings of 
the 5th Int. Symp. on Spatial Data Handling, Charleston, USA, vol. 1. 
 
13.1 Abstract 
This paper focuses on the definition and development of a topological model and operators 
for a three-dimensional spatial information system (SIS). The domain of the model consists of 
general k-dimensional spatial objects (0≤  k ≤ 3) forming k-dimensional topological spaces 
and represented by finite k-dimensional cell complexes or subdivisions embedded in the open 
Euclidean 3-manifold R3. The topological properties of 0-cell complexes are trivial whilst for 
l-cell complexes graph theoretic techniques with the addition of consistency chooks from knot 
theory are sufficient for the embedding in R3. 2-cell complexes define open or closed surfaces 
and assume the topological properties of 2-manifolds and a plethora of results in algebraic 
topology for calculating these properties and maintaining consistency. If a 3-cell is defined as 
an open 3-manifold with 2-manifold boundary(s) then a 3-cell complex of the open Euclidean 
3-manifold modelling space is formed by the solids, however the lack of topological results 
for characterising arbitrary subdivisions of any 3-manifold forces the introduction of practical 
methods for calculating their important topological properties and maintaining their 
consistency based on the 2-manifold boundaries which define the solids (and thus the 
subdivision). The individual 2-cells and 3-cells of these higher dimensional complexes may 
be singular, a general notion which includes the domain of non-manifold relationships 
mentioned in other work. Traversal operators may be defined based on the possible orderings 
of the neighbourhood structure of the cell complexes which will also be defined in this work. 
Local and global assembly and disassembly operators may be defined by considering 
combinations of local elements (i.e. cells) and global elements (i.e. complexes) with 
consistency and sufficiency as the major objectives. A review of the current approaches to n-
dimensional topological modelling is then made on the basis of the domain and operators 
defined and suggested in this research. 
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14. TetGen, A Quality Tetrahedral Mesh Generator and Three-
Dimensional Delaunay Triangulator 

Si, H. (2004) TetGen, A Quality Tetrahedral Mesh Generator and Three-Dimensional 
Delaunay Triangulator, User’s Manual (version 1.3), http://tetgen.berlios.de, pp. 17-18, 22. 
 
14.1 Abstract 
TetGen is a quality tetrahedral mesh generator and 3-dimensional Delaunay triangulator. 
Based on the the-state-of-the-art algorithms for Delaunay tetrahedralization and mesh 
generation, this program has been specifically designed to fulfil the task of automatically 
generating high quality tetrahedral meshes, which are suitable for scientific computing using 
numerical methods such as finite element and finite volume methods. 

The purpose of the manual is to give a brief explanation of the problems solved by 
TetGen and to provide a detailed user’s documentation. In the manual, the user will learn how 
to create tetrahedral meshes using TetGen’s input files and command line switches. In the last 
chapter of the manual, the programming interface of TetGen for calling TetGen from another 
program is explained. Various examples are given to simplify the “getting started”. 

The main goal of TetGen is to create tetrahedral meshes that have special properties for 
solving partial differential equations (PDEs) by finite element methods (FEM) and finite 
volume methods (FVM). These methods have been widely applied in contemporary 
engineering applications for simulating physical phenomena, such as mechanical deformation, 
heat transfer, electromagnetic problems, etc. 

TetGen is the starting point of this research. The aim is to add functions to TetGen 
which can solve the problems that are occurring when triangles are intersecting. 
 
14.2 Using TetGen (pp. 17) 
This section describes the use of TetGen as a stand alone program. It is invoked from the 
command line with a set of switches and an input file name. Switches are used to control the 
behaviour of TetGen and to specify the output files. In correspondence to the different 
switches, TetGen will generate the Delaunay tetrahedrization, the constrained Delaunay 
tetrahedrization or a quality conforming Delaunay mesh. The command syntax is: 
 
tetgen [-pq__a__Ars__iMT__dzo_fengGOBNEFICQVvh] input_file 
 
Underscores indicate that numbers may optionally follow certain switches. Do not leave any 
space between a switch and its numeric parameter. The “input file” must be a file with 
extension .node, or extension .poly or, .smesh, or .off, or .mesh if the -p switch is used. If -r is 
used, you must supply .node and .ele files, and possibly a .face file, and a .vol file as well. 
 
14.3 Command line switches (pp. 18) 
-p Tetrahedralizes a piecewise linear complex. 
-q Quality mesh generation. A minimum radius-edge ratio may be specified (default 2.0). 
-a Applies a maximum tetrahedron volume constraint. 
-A Assigns attributes to identify tetrahedra in certain regions. 
-r Reconstructs/Refines a previously generated mesh. 
-s Attempts to remove slivers. A maximum dihedral angle may be specified (default 175 

degree). 
-i Inserts a list of additional points into mesh. 
-M Does not merge coplanar facets. 
-T Set a tolerance for coplanar test (default 1e-8). 
-d Detect intersections of PLC facets. 
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-z Numbers all output items starting from zero. 
-o2 Generates second-order subparametric elements. 
-f Outputs faces (including non-boundary faces) to .face file. 
-e Outputs subsegments to .edge file. 
-n Outputs tetrahedra neighbours to .neigh file. 
-g Outputs mesh to .mesh file for viewing by Medit. 
-G Outputs mesh to .msh file for viewing by Gid. 
-O Outputs mesh to .off file for viewing by Geomview. 
-B Suppresses output of boundary information. 
-N Suppresses output of .node file. 
-E Suppresses output of .ele file. 
-F Suppresses output of .face file. 
-I Suppresses mesh iteration numbers. 
-C Checks the consistency of the final mesh. 
-Q Quiet: No terminal output except errors. 
-V Verbose: Detailed information, more terminal output. 
-v Prints the version information. 
-h Help: A brief instruction for using TetGen. 
 
14.4 TetGen’s file formats (pp. 22) 
.node input/output a list of nodes. 
.poly input a PLC. 
.smesh input/output a simple PLC. 
.ele input/output a list of tetrahedra. 
.face input/output a list of triangular faces. 
.edge output a list of boundary edges. 
.vol input a list of maximum volumes. 
.neigh output a list of neighbours. 
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