
 1

The validation of a triangulated boundary representation in 3D

Research plan

M.E. Hoefsloot - 1007157
Faculty of Civil Engineering and Geosciences
Department of Geodesy, Department of OTB

Delft University of Technology
Jaffalaan 9, 2628 BX Delft, the Netherlands
E-mail: M.E.Hoefsloot@student.tudelft.nl

1. Introduction
For many reasons we want to have a boundary representation of an object in 3D, which is
valid and closed. One reason is that we want to construct a tetrahedralization; therefore, the
boundary representation should be a valid and closed triangulation. For constructing this
tetrahedralization, the program TetGen will be used. The input of TetGen should be a valid
and closed representation, if not TetGen detects the invalid polygons. The aim of this research
is to conduct a solution to detect invalid triangles, to make them valid and to repair unclosed
triangulated 3D boundary representations.

2. Theoretical framework
The theory in this chapter is an extract of “Delaunay Triangulation and Meshing” (1998).

2.1 Triangle and tetrahedron
Triangle: While the triangle is a well-known object, a clear definition will be given. A
triangle is a 3-sided polygon, it is defined by the ordered list of its three vertices, denoted
as iP , which are given counter clockwise

 ()321 ,, PPPK = . (1)

There are six ways (or permutations) for expressing the vertices defining a triangle. In the
case where an orientation is defined, only three permutations are relevant. Thus for a triangle
in a plane, the orientation is implicitly defined using the normal of the plane, and the three
possible definitions imply that its surface is signed. Thus, the triangle considered will have a
strictly positive surface. Therefore, the surface area KS (in 2D) is positive and given by

1
1
1

2
1

33

22

11

yx
yx
yx

SK = (2)

where ii yx , are the coordinates of vertex ()3 ,1 =iiP and . stands for the determinant. This
definition enables to explicitly define the sides (or edges) of a given triangle. Edge ()3 ,1 , =ii ,
denoted as ia , is the edge joining vertex 1+iP to vertex 2+iP (while 3−= ii PP if 3>i is
assumed).

 2

Tetrahedron: A tetrahedron is a polyhedron with four triangular faces. It is well defined by
the ordered list of its four vertices iP

 ()4321 ,,, PPPPK = . (3)

There exits twelve permutations for expressing the vertices defining an oriented tetrahedron.
This text assumes that the faces are oriented, thus their normals are also oriented. In addition,
the volume is signed. Let KV be the volume of element K , then KV is defined as:

1
1
1
1

6
1

444

333

222

111

zyx
zyx
zyx
zyx

Vk = (4)

where iii zyx ,, are the coordinates of vertex iP of the element. This format enables to implicitly
define the four faces of the element. A face of K is an ordered list of three vertices:

 face 1: 234 PPP ,
 face 2: 431 PPP ,
 face 3: 124 PPP ,
 face 4: 321 PPP .

Similarly, the edges of K are implicitly defined as the following ordered pairs:
 edge 1: 21 PP ,
 edge 2: 31 PP ,
 edge 3: 41 PP ,
 edge 4: 32 PP ,
 edge 5: 42 PP ,
 edge 6: 43 PP ,

Each edge is defined from its first endpoint to its second endpoint.

Figure 1: A triangle (left) and a tetrahedron (right)

2.2 Triangulation and tetrahedralization
To define a triangulation, the concept of convex hulls is needed.

Convex hull: Let S be a set of points in 3R . If the iP ’s are these points, then

 ∑
=

n

i
ii P

1

λ (5)

 3

represents a linear combination of points in S. These combinations of n members of S,

for∑
=

=
n

i
i

1

1λ , define a subspace of 3R , which is referred to as the affine hull of the iP ’s. If, for

all 0 , ≥ii λ , such combinations are said to be convex. The convex hull of S, denoted as
()SConv , is the subset of 3R , generated by all the convex linear combinations of the members

of S. This hull is the smallest convex set including S.

Triangulation: Let S be a set of points in dR ()3or 2 == dd , the convex hull of S defines a
domainΩ in dR . If K is a simplex (triangle or tetrahedron according to d), then

Definition 1: rT is a simplical covering of Ω if the following conditions hold:
 (H0) The vertices of the elements in rT is exactly S.
 (H1) ∪

rTK

K
∈

=Ω .

 (H2) Every element K in rT is non-empty.

Tetrahedralization: In triangulations, the primitives with the highest dimension are faces. In a
three dimensional triangulation, i.e. a tetrahedral network, the primitives with the highest
dimension are tetrahedrons. A tetrahedral network is called a tetrahedralization. Using
tetrahedrons is the easiest way in computing volumes and overlays.

Figure 2: A triangulation (left) and a tetrahedralization (right)

2.3 Valid triangulation
In most cases a valid and closed covering (triangulation) is assumed. The aim of this research
is to conduct a solution to repair unclosed and invalid triangulations. Therefore, the following
definition is given:

Definition 2: rT is a valid triangulation of Ω , if rT is a covering following Definition 1
and if the following conditions hold:

 (H3) The intersection of any two elements in rT is either
o an empty set,
o a vertex,
o an edge.

3. First exploration

3.1 Topological relations
To come to a solution of the problem, the first step is to make an inventory of all topological
relations exiting in 3D. A topological relation is defined as the set of properties, which are

 4

invariant under homeomorphisms. When there is a kind of elastic transformation, metric
properties are changing, topological properties not. In this research, three kinds of objects will
be used: vertices, edges and faces, but only triangles). In this paragraph, all possible relations
between these objects will be discussed. To be able to distinguish topologic relations
especially those between two edges, two faces or an edge and a face, some spaces will be
defined according to Pigot (1990, pp. 375).

Definition 3: An n-simplex C can be divided into three parts:
 Interior set º of an n-simplex C: a point x is an interior point of C provided there exist

an open subset U such that x is an element of U and U is strictly contained within C.
The union of all such points is the interior set.

 Boundary set ∂ of an n-simplex C: ∂C = C - Cº
 Exterior set of an n-simplex C: complement of C

Above definition can be applied for vertices, edges and faces. The scheme in Table 1 can be
used to find topological relations between two objects. Looking to definition 3 and the
definition of a face, the boundary of the face consists of the edges and the vertices defining
these edges. As a help to find the relationships between two faces and between an edge and a
face, it seems nice to add the double-boundary set ∂∂ of C, which separates edges and the
vertices defining the boundary of a face.

Table 1: Application of definition 3
C C° ∂C ∂∂C
vertex - vertex -
edge edge vertices -
face face edges vertices

All relations, which have something to do with vertices, are easy, because the interior of a
vertex is empty. The easiest relation is the point-point-relation. Two points can be disjoint or
equal, this is easy to determine. Then, the vertex-edge relation. A vertex and an edge can be
disjoint, meet or intersect. The relations between a vertex and a face are almost the same.

According to Pigot (1991), eight unique topological relations between two edges can
be distinguished (see Figure 3): disjoint, meet, common boundaries, concur, overlap, equal,
cross and intersect. Only three of them are problem free, the others will be used in this
research.

meet commonbounds concur overlap equal

disjoint cross intersect

Figure 3: Eight unique relationships between two edges

Topological relations can also be put in a scheme. Let V be a vertex, let, E be an edge and let
F be a face. A starting-point of it will be given in Table 2 until Table 5; the other topological
relations (edge-face and face-face) will be worked out and implemented in the final report.

 5

Table 3: vertex-edge
 disjoint meet intersect
vertex V ∂V X X X

∂E - X - edge E
E° - - X

Table 4: vertex-face
 disjoint meet intersect concur
vertex V ∂V X X X X

∂∂F - X
∂F - X

face F

F° - X

Table 5: edge-edge
 disjoint concur meet intersect intersect cross equal *

∂E X X X X X edge E
E° X X X X X
∂E - X X X edge E
E° - X X X X

* or overlap or commonbounds

Properties of most of the relations will be used in computing intersections. Therefore, it is
needed to make a plan on what to do in which situation.

3.2 Computing intersections
From “Linear Algebra” we know, there is only an intersection of a line (vector) and a face
(spanned by vectors) if the vectors are linear independent. So, if T is a triangle spanned by
two vectors (2 1

F Fx x−⎡ ⎤⎣ ⎦ and 3 1
F Fx x−⎡ ⎤⎣ ⎦) and a base-vector (1

Fx⎡ ⎤⎣ ⎦), and if L is a line (2 1
L Lx x−⎡ ⎤⎣ ⎦).

There is an intersection if below equation has a solution. In addition, if that intersection is
inside the triangle.

32 1 1 1 2 1

1 2 1 2 3 1 1 1 2 1

2 1 3 1 1 2 1

FF F F F L L

F F F F F L L

F F F F F L L

xx x x x x x
y y y y y y y
z z z z z z z

α α λ
⎛ ⎞⎛ ⎞ ⎛ ⎞⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− + − + = −
⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦⎝ ⎠ ⎝ ⎠⎝ ⎠

 (6)

Computing a point is inside a triangle is somewhat easier, and then equation (7) has to be
derived. There is a big difference between calculating this in a software program like
MATLAB, a registered trademark of the Mathworks, or in C++, although equations in
MATLAB are written in C. Therefore, solving equations is just the beginning.

32 1 1 1 1

1 2 1 2 3 1 1 1

2 1 3 1 1 1

FF F F F P

F F F F F P

F F F F F P

xx x x x x
y y y y y y
z z z z z z

α α
⎛ ⎞⎛ ⎞ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎜ ⎟ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− + − + =
⎜ ⎟⎜ ⎟ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦⎝ ⎠ ⎝ ⎠

 (7)

Table 2: vertex-vertex
 disjoint equal
vertex V ∂V - X
vertex V ∂V - X

 6

3.3 TetGen in general
TetGen is a program, written by Hang Si, for generating quality tetrahedral meshes and three-
dimensional Delauney triangulations. It currently computes exact Delauney
tetrahedralizations, constrained Delauney tetrahedralizations, and quality tetrahedral meshes.
TetGen incorporates a suit of geometrical and mesh generation algorithms. A brief description
of these algorithms used in TetGen can be found in the first section of the user’s manual (Si,
2004) and a description of all relevant algorithms can be found in next paragraph.
The distributed version of TetGen includes the following files:

 README (3 kB)
 LICENSE (3 kB) Copyright notices.
 tetgen.h (90 kB) Header file of the TetGen library.
 tetgen.cxx (719 kB) C++ source code of the TetGen library.
 predicates.cxx (189 kB) C++ source code of the geometric predicates.
 makefile (2 kB) file for compiling TetGen.
 manual.pdf (342 kB) User's manual.
 example.poly (5 kB) A sample data file.

TetGen should run on all 32-bit and 64-bit computers. Use an ANSI C++ compiler to compile
the program. The easiest way to compile it is to edit and use the included makefile. Before
compiling, read the makefile, which describes the options, and edit it accordingly. You should
specify the C++ compiler, and the level of optimization. After compiling, type "tetgen -h" for
a brief introduction into TetGen. The included user's manual contains documentation and
examples. TetGen may be freely copied, modified, and redistributed under the copyright
notices given in the LICENSE file.

3.4 Relevant algorithms in TetGen
In this paragraph, a short description of some relevant algorithms is given. Although the code
of Hang Si is well readable, it is comprehensive, so it will be hard to understand and use it.

 Fast and Robust Triangle-Triangle Overlap Test
Several geometric predicates are defined. Their parameters are all points. Each point is
an array of two or three double precision floating-point numbers. The geometric
predicates are:
int tri_tri_overlap_test_3d(p1,q1,r1,p2,q2,r2)
int tri_tri_overlap_test_2d(p1,q1,r1,p2,q2,r2)
int tri_tri_intersection_test_3d(p1,q1,r1,p2,q2,r2,coplanar,source,target)
The last is a version that computes the segment of intersection when the triangles
overlap. Each function returns 1 if the triangles (including their boundary) intersect,
otherwise 0.
(line 4176 of predicates.cxx)

 tritritest() Test if two triangles are intersecting in their interior.
One triangle is represented by 'checktet', the other is given by three corners 'p1', 'p2'
and 'p3'. This routine calls tri_tri_overlap_test_3d(). In the case that two triangles
share exactly one vertex, we shrink one triangle a little bit inside before calling this
routine. If no, four points are coplanar; the shrink does not change the test result. 'eps'
is the relative epsilon value used to determine coplanar points. It is given here
explicitly which means it may be different with the global 'b->epsilon'.
(line 13248 of tetgen.cxx)

 7

In tritritest () also the number of sharing points will be tested from which some things can
be concluded.
 No common vertex, two triangles are completely separated.
 One vertex is common.

o Get the common vertex of the first triangle in 'sp1', and other two vertices are
'vp1' and 'vp2'.

o Do the triangle-triangle intersection test between two separated triangles.
 Two vertices are common.

o Get the two common vertices in 'sp1' and 'sp2', two other vertices in 'vp1' and
'vp2'.

o Test if the four vertices are coplanar.
o They can be intersecting if one triangle includes other one.
o The four points are degenerate, e.g. three of them are collinear.

 Three vertices are common, the trivial case, two faces are the same.

Above algorithms test whether two triangles intersect or not. Two problems, the first
conclusion is not right, and it is still not clear if the exact intersection is derived. Solving these
problems will be part of the research; it is probable much code has to be written.

3.5 Phased validation
It is clear the validation has to be done in small steps, because of the programming and
because of the different topological relations. Therefore, a framework has to be designed and
every step or possibility has to be added to it.

4. Research plan

4.1 Research Aim
As said in the first chapter, the outcome of this research should be a programming code,
which can be used to change an invalid triangulated boundary representation into a valid one
in 3D. This will be done in six steps.

1. Make an inventory of all topological relations that exist between two points, a point
and a line, a point and a face, two lines, a line and a face and two faces.

2. Find a way to test whether two triangles intersect and to determine their topological
relation.

3. Find the way to derive the intersection points.
4. Look to the solution of Hang Si (TetGen), and use this program to implement the new

solution in C++.
5. Look to the solutions or parts of solutions made by other programmers and compare

them.
6. Find possibilities, like indexing methods, exist to make the algorithm more efficient.

The steps are needed to give an answer to the research question:
What is an efficient way to change an invalid 3D triangulated boundary representation
into a valid and closed one?

The use of the code of Hang Si and the use of C++ are the only preconditions that are defined
in the assignment. This is because the code of Hang Si is good, and it is extensible by others
because it is written in C++ and therefore well readable.

 8

4.2 Time-schedule
This report is part of the course “Individual Assignment” and this course is part of the master
study “Geodetic Engineering - Geo-information and Land Management”. In the professional
practice of an engineer, problem solving is core business. A central element in this problem
solving is designing. In the “Individual Assignment”, this designing will be trained in an
integrated way, using a real life problem. This assignment should be done individually and it
has to be completed within 5 months. The course can be done in Dutch as well as English;
this depends on the topic. The course contains three central elements:

 making a time-schedule for the assignment;
 making the specific design;
 presenting the results of the research project by writing a report and an optional oral

presentation.
This report is the first element.

The calendar time of the course is 5 months and the clock time is 8 Ects (224 hours). Because
the starting date of this research is October 1 2004, it should be finished before March 1 2005.
I have planned to work 2 or 3 days a week on this course, 2 days a week from October till
December and three days a week from January, every day encompasses 6 hours of work;
therefore I hope this planning will be obtained:

Research plan Main research Report
October November December January February

36 hour 48 hour 36 hour 48 hour 24 hour 36 hour

This schema the total period is divided in 3 parts, the research plan, the main research and the
writing of the report, the dates given below are the start and end dates of these parts:

 2004-10-01: Official start of the course
 2004-10-31: Research plan is finished
 2004-11-01: Start of the main research
 2004-01-15: Main research is finished
 2005-01-16: Start of the writing of the report
 2005-02-11: Report is finished
 2005-03-01: Course should be finished

November will be used for literature study, to obtain answers to the three first research steps.
In December and January the central part of the research will happen, step four the
implementation in C++. When time is left, the last two steps will be carried out.

References
George, P. and Borouchaki, H. (1998) Delaunay Triangulation and Meshing, Application to
Finite Elements, pp. 5, 6, 9, 10, 13, 14.

Pigot, S. (1991) Topological Models for 3D Spatial Information Systems, Auto-Carto 10:
Technical Papers of the 1991 ACSM-ASPRS Annual Convention, Baltimore: ACSM-ASPRS,
1991. 6: 368-392.

Si, H. (2004) TetGen, A Quality Tetrahedral Mesh Generator and Three-Dimensional
Delaunay Triangulator, User’s Manual (version 1.3), pp. 5-8, http://tetgen.berlios.de.

 9

Literature proposed for research
George, P. and Borouchaki, H. (1998) Delaunay Triangulation and Meshing, Application to
Finite Elements, pp. 5, 6, 9, 10, 13, 14.

Lay, D.C. (1998) Linear algebra and its applications, second edition, Addison-Wesley, pp. 34,
35, 42, 62, 166, 216, 381.

Pigot, S. (1991) Topological Models for 3D Spatial Information Systems, Auto-Carto 10:
Technical Papers of the 1991 ACSM-ASPRS Annual Convention, Baltimore: ACSM-ASPRS,
1991. 6: 368-392.

Schneider, P. and Eberly, D. (2003) Geometric tools for computer graphics, San Francisco:
Morgan Kaufmann.

Si, H. (2004) TetGen, A Quality Tetrahedral Mesh Generator and Three-Dimensional
Delaunay Triangulator, User’s Manual (version 1.3), pp. 5-8, http://tetgen.berlios.de.

