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1. Introduction 
For many reasons we want to have a boundary representation of an object in 3D, which is 
valid and closed. One reason is that we want to construct a tetrahedralization; therefore, the 
boundary representation should be a valid and closed triangulation. For constructing this 
tetrahedralization, the program TetGen will be used. The input of TetGen should be a valid 
and closed representation, if not TetGen detects the invalid polygons. The aim of this research 
is to conduct a solution to detect invalid triangles, to make them valid and to repair unclosed 
triangulated 3D boundary representations. 
 
2. Theoretical framework 
The theory in this chapter is an extract of “Delaunay Triangulation and Meshing” (1998). 
 
2.1 Triangle and tetrahedron 
Triangle: While the triangle is a well-known object, a clear definition will be given. A 
triangle is a 3-sided polygon, it is defined by the ordered list of its three vertices, denoted 
as iP , which are given counter clockwise 

 ( )321 ,, PPPK = . (1) 

There are six ways (or permutations) for expressing the vertices defining a triangle. In the 
case where an orientation is defined, only three permutations are relevant. Thus for a triangle 
in a plane, the orientation is implicitly defined using the normal of the plane, and the three 
possible definitions imply that its surface is signed. Thus, the triangle considered will have a 
strictly positive surface. Therefore, the surface area KS (in 2D) is positive and given by 
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where ii yx ,  are the coordinates of vertex ( )3 ,1 =iiP  and  .  stands for the determinant. This 
definition enables to explicitly define the sides (or edges) of a given triangle. Edge ( )3 ,1 , =ii , 
denoted as ia , is the edge joining vertex 1+iP  to vertex 2+iP  (while 3−= ii PP  if 3>i  is 
assumed). 
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Tetrahedron: A tetrahedron is a polyhedron with four triangular faces. It is well defined by 
the ordered list of its four vertices iP  

 ( )4321 ,,, PPPPK = . (3) 

There exits twelve permutations for expressing the vertices defining an oriented tetrahedron. 
This text assumes that the faces are oriented, thus their normals are also oriented. In addition, 
the volume is signed. Let KV  be the volume of element K , then KV is defined as: 
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where iii zyx ,, are the coordinates of vertex iP of the element. This format enables to implicitly 
define the four faces of the element. A face of K is an ordered list of three vertices: 

 face 1: 234 PPP , 
 face 2: 431 PPP , 
 face 3: 124 PPP , 
 face 4: 321 PPP . 

Similarly, the edges of K are implicitly defined as the following ordered pairs: 
 edge 1: 21 PP , 
 edge 2: 31 PP , 
 edge 3: 41 PP , 
 edge 4: 32 PP , 
 edge 5: 42 PP , 
 edge 6: 43 PP , 

Each edge is defined from its first endpoint to its second endpoint. 
 

 
Figure 1: A triangle (left) and a tetrahedron (right) 

 
2.2 Triangulation and tetrahedralization 
To define a triangulation, the concept of convex hulls is needed. 
 
Convex hull: Let S be a set of points in 3R . If the iP ’s are these points, then 
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represents a linear combination of points in S. These combinations of n members of S, 

for∑
=

=
n

i
i

1

1λ , define a subspace of 3R , which is referred to as the affine hull of the iP ’s. If, for 

all 0 , ≥ii λ , such combinations are said to be convex. The convex hull of S, denoted as 
( )SConv , is the subset of 3R , generated by all the convex linear combinations of the members 

of S. This hull is the smallest convex set including S. 
 
Triangulation: Let S be a set of points in dR ( )3or  2 == dd , the convex hull of S defines a 
domainΩ  in dR . If K is a simplex (triangle or tetrahedron according to d), then 

Definition 1: rT  is a simplical covering of Ω  if the following conditions hold: 
 (H0) The vertices of the elements in rT  is exactly S. 
 (H1) ∪

rTK

K
∈

=Ω . 

 (H2) Every element K in rT  is non-empty. 
 
Tetrahedralization: In triangulations, the primitives with the highest dimension are faces. In a 
three dimensional triangulation, i.e. a tetrahedral network, the primitives with the highest 
dimension are tetrahedrons. A tetrahedral network is called a tetrahedralization. Using 
tetrahedrons is the easiest way in computing volumes and overlays. 
 

 
Figure 2: A triangulation (left) and a tetrahedralization (right) 

 
2.3 Valid triangulation 
In most cases a valid and closed covering (triangulation) is assumed. The aim of this research 
is to conduct a solution to repair unclosed and invalid triangulations. Therefore, the following 
definition is given: 

Definition 2: rT  is a valid triangulation of Ω , if rT  is a covering following Definition 1 
and if the following conditions hold: 

 (H3) The intersection of any two elements in rT  is either 
o an empty set, 
o a vertex, 
o an edge. 

 
3. First exploration 
 
3.1 Topological relations 
To come to a solution of the problem, the first step is to make an inventory of all topological 
relations exiting in 3D. A topological relation is defined as the set of properties, which are 
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invariant under homeomorphisms. When there is a kind of elastic transformation, metric 
properties are changing, topological properties not. In this research, three kinds of objects will 
be used: vertices, edges and faces, but only triangles). In this paragraph, all possible relations 
between these objects will be discussed. To be able to distinguish topologic relations 
especially those between two edges, two faces or an edge and a face, some spaces will be 
defined according to Pigot (1990, pp. 375). 

Definition 3: An n-simplex C can be divided into three parts: 
 Interior set º of an n-simplex C: a point x is an interior point of C provided there exist 

an open subset U such that x is an element of U and U is strictly contained within C. 
The union of all such points is the interior set. 

 Boundary set ∂ of an n-simplex C: ∂C = C - Cº 
 Exterior set of an n-simplex C: complement of C 

  
Above definition can be applied for vertices, edges and faces. The scheme in Table 1 can be 
used to find topological relations between two objects. Looking to definition 3 and the 
definition of a face, the boundary of the face consists of the edges and the vertices defining 
these edges. As a help to find the relationships between two faces and between an edge and a 
face, it seems nice to add the double-boundary set ∂∂ of C, which separates edges and the 
vertices defining the boundary of a face. 
 

Table 1: Application of definition 3 
C C° ∂C ∂∂C 
vertex - vertex - 
edge edge vertices - 
face face edges vertices 

 
All relations, which have something to do with vertices, are easy, because the interior of a 
vertex is empty. The easiest relation is the point-point-relation. Two points can be disjoint or 
equal, this is easy to determine. Then, the vertex-edge relation. A vertex and an edge can be 
disjoint, meet or intersect. The relations between a vertex and a face are almost the same. 

According to Pigot (1991), eight unique topological relations between two edges can 
be distinguished (see Figure 3): disjoint, meet, common boundaries, concur, overlap, equal, 
cross and intersect. Only three of them are problem free, the others will be used in this 
research. 
 

meet           commonbounds         concur                 overlap                  equal

disjoint                                             cross      intersect

 
Figure 3: Eight unique relationships between two edges 

 
Topological relations can also be put in a scheme. Let V be a vertex, let, E be an edge and let 
F be a face. A starting-point of it will be given in Table 2 until Table 5; the other topological 
relations (edge-face and face-face) will be worked out and implemented in the final report. 
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Table 3: vertex-edge 
  disjoint meet intersect
vertex V ∂V X X X 

∂E - X - edge E 
E° - - X 

 
Table 4: vertex-face 
  disjoint meet intersect concur 
vertex V ∂V X X X X 

∂∂F  - X   
∂F -  X  

face F 

F° -   X 
 

Table 5: edge-edge 
  disjoint concur meet intersect intersect cross equal *

∂E X X X X   X edge E 
E° X X   X X X 
∂E -  X  X  X edge E 
E° - X  X  X X 

* or overlap or commonbounds 
 
Properties of most of the relations will be used in computing intersections. Therefore, it is 
needed to make a plan on what to do in which situation. 
 
3.2 Computing intersections  
From “Linear Algebra” we know, there is only an intersection of a line (vector) and a face 
(spanned by vectors) if the vectors are linear independent. So, if T is a triangle spanned by 
two vectors ( 2 1

F Fx x−⎡ ⎤⎣ ⎦  and 3 1
F Fx x−⎡ ⎤⎣ ⎦ ) and a base-vector ( 1

Fx⎡ ⎤⎣ ⎦ ), and if L is a line ( 2 1
L Lx x−⎡ ⎤⎣ ⎦ ). 

There is an intersection if below equation has a solution. In addition, if that intersection is 
inside the triangle. 
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Computing a point is inside a triangle is somewhat easier, and then equation (7) has to be 
derived. There is a big difference between calculating this in a software program like 
MATLAB, a registered trademark of the Mathworks, or in C++, although equations in 
MATLAB are written in C. Therefore, solving equations is just the beginning. 
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Table 2: vertex-vertex 
  disjoint equal 
vertex V ∂V - X 
vertex V ∂V - X 
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3.3 TetGen in general 
TetGen is a program, written by Hang Si, for generating quality tetrahedral meshes and three-
dimensional Delauney triangulations. It currently computes exact Delauney 
tetrahedralizations, constrained Delauney tetrahedralizations, and quality tetrahedral meshes. 
TetGen incorporates a suit of geometrical and mesh generation algorithms. A brief description 
of these algorithms used in TetGen can be found in the first section of the user’s manual (Si, 
2004) and a description of all relevant algorithms can be found in next paragraph. 
The distributed version of TetGen includes the following files: 

 README   (3 kB) 
 LICENSE   (3 kB)  Copyright notices. 
 tetgen.h   (90 kB) Header file of the TetGen library. 
 tetgen.cxx   (719 kB) C++ source code of the TetGen library. 
 predicates.cxx  (189 kB) C++ source code of the geometric predicates. 
 makefile   (2 kB)  file for compiling TetGen. 
 manual.pdf   (342 kB) User's manual. 
 example.poly   (5 kB)  A sample data file. 

 
TetGen should run on all 32-bit and 64-bit computers. Use an ANSI C++ compiler to compile 
the program. The easiest way to compile it is to edit and use the included makefile. Before 
compiling, read the makefile, which describes the options, and edit it accordingly. You should 
specify the C++ compiler, and the level of optimization. After compiling, type "tetgen -h" for 
a brief introduction into TetGen. The included user's manual contains documentation and 
examples. TetGen may be freely copied, modified, and redistributed under the copyright 
notices given in the LICENSE file. 
 
3.4 Relevant algorithms in TetGen  
In this paragraph, a short description of some relevant algorithms is given. Although the code 
of Hang Si is well readable, it is comprehensive, so it will be hard to understand and use it. 
 

 Fast and Robust Triangle-Triangle Overlap Test 
Several geometric predicates are defined. Their parameters are all points. Each point is 
an array of two or three double precision floating-point numbers. The geometric 
predicates are: 
int tri_tri_overlap_test_3d(p1,q1,r1,p2,q2,r2) 
int tri_tri_overlap_test_2d(p1,q1,r1,p2,q2,r2) 
int tri_tri_intersection_test_3d(p1,q1,r1,p2,q2,r2,coplanar,source,target) 
The last is a version that computes the segment of intersection when the triangles 
overlap. Each function returns 1 if the triangles (including their boundary) intersect, 
otherwise 0. 
(line 4176 of predicates.cxx) 
 

 tritritest() Test if two triangles are intersecting in their interior. 
One triangle is represented by 'checktet', the other is given by three corners 'p1', 'p2' 
and 'p3'. This routine calls tri_tri_overlap_test_3d(). In the case that two triangles 
share exactly one vertex, we shrink one triangle a little bit inside before calling this 
routine. If no, four points are coplanar; the shrink does not change the test result. 'eps' 
is the relative epsilon value used to determine coplanar points. It is given here 
explicitly which means it may be different with the global 'b->epsilon'. 
(line 13248 of tetgen.cxx) 
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In tritritest () also the number of sharing points will be tested from which some things can 
be concluded. 
 No common vertex, two triangles are completely separated. 
 One vertex is common. 

o Get the common vertex of the first triangle in 'sp1', and other two vertices are 
'vp1' and 'vp2'. 

o Do the triangle-triangle intersection test between two separated triangles. 
 Two vertices are common. 

o Get the two common vertices in 'sp1' and 'sp2', two other vertices in 'vp1' and 
'vp2'. 

o Test if the four vertices are coplanar. 
o They can be intersecting if one triangle includes other one. 
o The four points are degenerate, e.g. three of them are collinear. 

 Three vertices are common, the trivial case, two faces are the same. 
 
Above algorithms test whether two triangles intersect or not. Two problems, the first 
conclusion is not right, and it is still not clear if the exact intersection is derived. Solving these 
problems will be part of the research; it is probable much code has to be written. 
 
3.5 Phased validation  
It is clear the validation has to be done in small steps, because of the programming and 
because of the different topological relations. Therefore, a framework has to be designed and 
every step or possibility has to be added to it. 
 
4. Research plan 
 
4.1 Research Aim 
As said in the first chapter, the outcome of this research should be a programming code, 
which can be used to change an invalid triangulated boundary representation into a valid one 
in 3D. This will be done in six steps. 

1. Make an inventory of all topological relations that exist between two points, a point 
and a line, a point and a face, two lines, a line and a face and two faces. 

2. Find a way to test whether two triangles intersect and to determine their topological 
relation. 

3. Find the way to derive the intersection points. 
4. Look to the solution of Hang Si (TetGen), and use this program to implement the new 

solution in C++. 
5. Look to the solutions or parts of solutions made by other programmers and compare 

them. 
6. Find possibilities, like indexing methods, exist to make the algorithm more efficient. 

The steps are needed to give an answer to the research question: 
What is an efficient way to change an invalid 3D triangulated boundary representation 
into a valid and closed one? 

 
The use of the code of Hang Si and the use of C++ are the only preconditions that are defined 
in the assignment. This is because the code of Hang Si is good, and it is extensible by others 
because it is written in C++ and therefore well readable. 
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4.2 Time-schedule 
This report is part of the course “Individual Assignment” and this course is part of the master 
study “Geodetic Engineering - Geo-information and Land Management”. In the professional 
practice of an engineer, problem solving is core business. A central element in this problem 
solving is designing. In the “Individual Assignment”, this designing will be trained in an 
integrated way, using a real life problem. This assignment should be done individually and it 
has to be completed within 5 months. The course can be done in Dutch as well as English; 
this depends on the topic. The course contains three central elements: 

 making a time-schedule for the assignment; 
 making the specific design; 
 presenting the results of the research project by writing a report and an optional oral 

presentation. 
This report is the first element. 
 
The calendar time of the course is 5 months and the clock time is 8 Ects (224 hours). Because 
the starting date of this research is October 1 2004, it should be finished before March 1 2005. 
I have planned to work 2 or 3 days a week on this course, 2 days a week from October till 
December and three days a week from January, every day encompasses 6 hours of work; 
therefore I hope this planning will be obtained: 
 

Research plan Main research Report 
October November December January February 
                                          
36 hour 48 hour 36 hour 48 hour 24 hour 36 hour 

 
This schema the total period is divided in 3 parts, the research plan, the main research and the 
writing of the report, the dates given below are the start and end dates of these parts: 

 2004-10-01: Official start of the course 
 2004-10-31: Research plan is finished 
 2004-11-01: Start of the main research 
 2004-01-15: Main research is finished 
 2005-01-16: Start of the writing of the report 
 2005-02-11: Report is finished 
 2005-03-01: Course should be finished 

 
November will be used for literature study, to obtain answers to the three first research steps. 
In December and January the central part of the research will happen, step four the 
implementation in C++. When time is left, the last two steps will be carried out. 
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